Refine Your Search

Topic

Search Results

Journal Article

Power-Split HEV Control Strategy Development with Refined Engine Transients

2012-04-16
2012-01-0629
Power-split hybrid-electric vehicles (HEVs) employ two power paths between the internal combustion (IC) engine and the driven wheels routed through gearing and electric machines (EMs) composing an electrically variable transmission (EVT). The EVT allows IC engine control such that rotational speed can be independent of vehicle speed at all times. By breaking the rigid mechanical connection between the IC engine and the driven wheels, the EVT allows the IC engine to operate in the most efficient region of its characteristic brake specific fuel consumption (BSFC) map. If the most efficient IC engine operating point produces more power than is requested by the driver, the excess IC engine power can be stored in the energy storage system (ESS) and used later. Conversely, if the most efficient IC engine operating point does not meet the power request of the driver, the ESS delivers the difference to the wheels through the EMs.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
Technical Paper

Design Optimization of a Plug-In Hybrid Electric Vehicle

2007-04-16
2007-01-1545
A plug-in hybrid electric vehicle (PHEV) design with design parameters electric motor size, engine size, battery capacity, and battery chemistry type, is optimized with minimum cost as a measure of merit. The PHEV is required to meet a fixed set of performance constraints consisting of 0-60 mph acceleration, 50-70 mph acceleration, 0-30 mph acceleration in all electric operation, top speed, grade ability, and all electric range. The optimization is carried out for values of all electric range of 10, 20, and 40 miles. The social and economic impacts of the optimum designs in terms of reduced gasoline consumption and carbon emissions reduction are calculated. Argonne National Laboratory's Powertrain Systems Analysis Toolkit is used to simulate the performance and fuel economy of the PHEV designs. The costs of different PHEV components and the present value of battery replacements over the vehicle's life are used to determine the design's drivetrain cost.
Technical Paper

Forecasting the Impact of Technology Infusion on Subsonic Transport Affordability

1998-09-28
985576
The design of complex systems, such as commercial aircraft, has drastically changed since the middle 1970's. Budgetary and airline requirements have forced many aerospace companies to reduce the amount of time and monetary investments in future revolutionary concepts and design methods. The current NASA administration has noticed this shift in aviation focus and responded with the “Three Pillars for Success” program. This program is a roadmap for the development of research, innovative ideas, and technology implementation goals for the next 20 years. As a response to this program, the Aerospace Systems Design Laboratory at Georgia Tech is developing methods whereby forecasting techniques will aid in the proper assessment of future vehicle concepts. This method is called Technology Impact Forecasting (TIF). This method is applied to a medium-range, intra-continental, commercial transport concept.
Technical Paper

A Probabilistic Design Methodology for Commercial Aircraft Engine Cycle Selection

1998-09-28
985510
The objective of this paper is to examine ways in which to implement probabilistic design methods in the aircraft engine preliminary design process. Specifically, the focus is on analytically determining the impact of uncertainty in engine component performance on the overall performance of a notional large commercial transport, particularly the impact on design range, fuel burn, and engine weight. The emphasis is twofold: first is to find ways to reduce the impact of this uncertainty through appropriate engine cycle selections, and second is on finding ways to leverage existing design margin to squeeze more performance out of current technology. One of the fundamental results shown herein is that uncertainty in component performance has a significant impact on the overall aircraft performance (it is on the same order of magnitude as the impact of the cycle itself).
Technical Paper

Battery Modeling for HEV Simulation Model Development

2001-03-05
2001-01-0960
Battery modeling is of major concern for Hybrid Electric Vehicle (HEV) and Electric vehicle (EV) modeling. The major issue lies in characterizing the battery power output in relation to battery's State of Charge (SOC) in various application conditions. In particular, the challenge is associated with the difficulty that the characteristic parameters of the battery, i.e. the accurate data on the open circuit voltage and the internal resistance are hardly obtainable in practical conditions. In this paper, a battery capacity representation and a practical way of battery modeling is introduced for simulation model development based on the experimental data. A realistic way of battery SOC representation is generated from the battery output data. Empirical formulation is derived from the data to correlate the battery current, voltage output with the battery SOC.
Technical Paper

Development of the Design of a Plug-In Hybrid-Electric Vehicle for the EcoCAR 3 Competition

2016-04-05
2016-01-1257
The design of a performance hybrid electric vehicle includes a wide range of architecture possibilities. A large part of the design process is identifying reasonable vehicle architectures and vehicle performance capabilities. The Ohio State University EcoCAR 3 team designed a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed with a 44-mile all-electric range. It also features an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak electric machine. This report details the design and modeling process followed by the Ohio State team during Year 1 of the competition. The process included researching the customer needs of the vehicle, determining team design goals, initial modeling, and selecting a vehicle architecture.
Technical Paper

Model and Controls Development of a Post-Transmission PHEV for the EcoCAR 3 Competition

2016-04-05
2016-01-1252
The Ohio State University EcoCAR 3 team is designing a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed to have a 44-mile all-electric range. The vehicle is to consist of an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak-power electric machine. This report details the model and controls development process followed by the Ohio State team during Year 1 of the EcoCAR 3 competition. The focus of the paper will be on overall development of a vehicle model, initial simulation results, and supervisory controls development. Finally, initial energy consumption results from the model and future improvements will be discussed.
Technical Paper

Design Methodology for Energy Storage System in Motorsports Using Statistical Analysis of Mission Profile

2022-03-29
2022-01-0662
In recent years, many motorsports have been developing competitions based on electric vehicles. The demanding performance requires the battery pack to have the perfect balance between energy, power, and weight. This research paper presents a systematic methodology for the initial design of the battery pack (size and cell chemistry) by statistically analyzing the characteristics of the mission profile. The power profile for the battery pack of a motorsport vehicle can be estimated by considering the duty cycle of a racing car using the technical and sporting regulations and vehicle parameters. In this paper, many statistical metrics correlated to this power profile have been defined and analyzed (such as the max, mean, and standard deviation of the power profile, the total energy consumed, and the expected heat generation). These metrics have been used to estimate the cell energy and power density requirement and the pack sizing considering the weight constraints.
Journal Article

Physics-Based Equivalent Circuit Model for Lithium-Ion Cells via Reduction and Approximation of Electrochemical Model

2022-03-29
2022-01-0701
Physics-based electrochemical models and empirical Equivalent Circuit Models (ECMs) are well-established and widely used modeling techniques to predict the voltage behavior of lithium-ion cells. Electrochemical models are typically very accurate and require relatively little experimental data to calibrate, but present high mathematical and computational complexity. Conversely, ECMs are more computationally efficient and mathematically simpler, making them well-suited for applications in controls, diagnosis, and state estimation of lithium-ion battery packs. However, the calibration process requires extensive testing to calibrate the parameters of the model over a wide range of operating conditions. This paper bridges the gap between these two classes of models by developing a method to analytically define the ECM parameters starting from an already-calibrated Extended Single-Particle Model (ESPM).
Technical Paper

A Comparative Study between Physics, Electrical and Data Driven Lithium-Ion Battery Voltage Modeling Approaches

2022-03-29
2022-01-0700
This paper benchmarks three different lithium-ion (Li-ion) battery voltage modelling approaches, a physics-based approach using an Extended Single Particle Model (ESPM), an equivalent circuit model, and a recurrent neural network. The ESPM is the selected physics-based approach because it offers similar complexity and computational load to the other two benchmarked models. In the ESPM, the anode and cathode are simplified to single particles, and the partial differential equations are simplified to ordinary differential equations via model order reduction. Hence, the required state variables are reduced, and the simulation speed is improved. The second approach is a third-order equivalent circuit model (ECM), and the third approach uses a model based on a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN)). A Li-ion pouch cell with 47 Ah nominal capacity is used to parameterize all the models.
Technical Paper

A Generalized Model for Vehicle Thermodynamic Loss Management and Technology Concept Evaluation

2000-10-10
2000-01-5562
The objective of this paper is to develop a generalized loss management model to account for the usage of thermodynamic work potential in vehicles of any type. The key to accomplishing this is creation of a differential representation for vehicle loss as a function of operating condition. This differential model is then integrated through time to obtain an analytical estimate for total usage (and loss) of work potential consumed by each loss mechanism present during vehicle operation. The end result of this analysis is a better understanding of how the work potential initially present in the fuel, batteries, etc. is partitioned amongst all losses relevant to the vehicle's operation. The loss partitioning estimated from this loss management model can be used in conjunction with cost accounting systems to gain a better understanding of underlying drivers on vehicle manufacturing and operating costs.
Technical Paper

Effects of Thermal and Auxiliary Dynamics on a Fuel Cell Based Range Extender

2018-04-03
2018-01-1311
Batteries are useful in Fuel Cell Hybrid Electric Vehicles (FCHEV) to fulfill transient demands and for regenerative braking. Efficient energy management strategies paired with optimal powertrain design further improves the efficiency. In this paper, a new methodology to simultaneously size the propulsive elements and optimize the power-split strategy of a Range Extended Battery Electric Vehicle (REBEV), using a Polymer Electron Membrane Fuel Cell (PEMFC), is proposed and preliminary studies on the effects of the driving mission profile and the auxiliary power loads on the sizing and optimal performance of the powertrain design are carried out. Dynamic Programming is used to compute the optimal energy management strategy for a given driving mission profile, providing a global optimal solution.
Technical Paper

Optimizing Battery Cooling System for a Range Extended Electric Truck

2019-04-02
2019-01-0158
Battery packs used in electrified automotive powertrains support heavy electrical loads resulting in significant heat generation within them. Cooling systems are used to regulate the battery pack temperatures, helping to slow down battery aging. Vehicle-level energy consumption simulations serve as a first step for determining the specifications of a battery cooling system based on the duty cycle and interactions with the rest of the powertrain. This paper presents the development of a battery model that takes into account the energy impact of heating in the battery and demonstrates its use in a vehicle-level energy consumption simulator to set the specifications of a suitable cooling system for a vehicle application. The vehicle application used in this paper is a Class 6 Pickup and Delivery commercial vehicle with a Range-Extended Electric Vehicle (REEV) powertrain configuration.
Technical Paper

Control of PHEV and HEV Parallel Powertrains Using a Sequential Linearization Algorithm

2015-04-14
2015-01-1219
Using measurable physical input variables, an implementable control algorithm for parallel architecture plug-in and non-plug-in hybrid electric vehicle (PHEV and HEV) powertrains is presented. The control of the electric drive is based on an algebraic mapping of the accelerator pedal position, the battery state-of-charge (SOC), and the vehicle velocity into a motor controller input torque command. This mapping is developed using a sequential linearization control (SLC) methodology. The internal combustion engine (ICE) control uses a modified accelerator pedal to throttle plate angle using an adjustable gain parameter that, in turn, determines the sustained battery SOC. Searches over an admissible control space or the use of pre-defined look-up tables are thus avoided. Actual on-road results for a Ford Explorer with a through-the-road (TTR) hybrid powertrain using this control methodology are presented.
Technical Paper

Plant Modeling and Software Verification for a Plug-in Hybrid Electric Vehicle in the EcoCAR 2 Competition

2015-04-14
2015-01-1229
The EcoCAR 2: Plugging into the Future team at The Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 44 miles of all-electric range. The vehicle features an 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This paper details three years of modeling and simulation development for the OSU EcoCAR 2 vehicle. Included in this paper are the processes for developing simulation platform and model requirements, plant model and soft ECU development, test development and validation, automated regression testing, and controls and calibration optimization.
Technical Paper

Impact Welding of Aluminum Alloy 6061 to Dual Phase 780 Steel Using Vaporizing Foil Actuator

2015-04-14
2015-01-0701
Vaporizing Foil Actuators (VFA) are based on the phenomenon of rapid vaporization of thin metallic foils and wires, caused by passage of a capacitor bank driven current on the order of 100 kA. The burst of the conductor is accompanied with a high-pressure pulse, which can be used for working metal at high strain rates. This paper focuses on the use of VFA for collision welding of dissimilar metals, in particular, aluminum and steel. Aluminum alloy 6061 sheets of 1 mm thickness were launched to velocities in excess of 650 m/s with input electrical energy of 8 kJ into 0.0762 mm thick, dog-bone shaped aluminum foil actuators. Target sheets made from dual phase steel (DP780) were impacted with the aluminum flyer sheet, and solid state impact welds were created. During mechanical testing, many samples failed outside the weld area, thereby indicating that the weld was stronger than the parent aluminum.
Technical Paper

Design of a Grid-Friendly DC Fast Charge Station with Second Life Batteries

2019-04-02
2019-01-0867
DC-fast charge (DCFC) may be amenable for widespread EV adoption. However, there are potential challenges associated with implementation and operation of the DCFC infrastructures. The integration of energy storage systems can limit the scale of grid installation required for DCFC and enable more efficient grid energy usage. In addition, second-life batteries (SLBs) can find application in DCFC, significantly reducing installation cost when compared to solutions based on new battery packs. However, both system architecture and control strategy require optimization to ensure an optimal use of SLBs, including degradation and thermal aspects. This study proposes an application of automotive SLBs for DCFC stations where high power grid connection is not available or feasible. Several SLBs are connected to the grid by means of low power chargers (e.g. L2 charging station), and a DC/DC converter controls the power to the EV power dispenser.
Technical Paper

High-Performance Plug-In Hybrid Electric Vehicle Design Studies and Considerations

2015-04-14
2015-01-1158
This paper presents a detailed design study and associated considerations supporting the development of high-performance plug-in hybrid electric vehicles (PHEVs). Due to increasingly strict governmental regulations and increased consumer demand, automotive manufacturers have been tasked with the reduction of fuel consumption and greenhouse gas (GHG) emissions. PHEV powertrains can provide a needed balance in terms of fuel economy and vehicle performance by exploiting regenerative braking, pure electric vehicle operation, engine load-point shifting, and power-enhancing hybrid traction modes. Thus, properly designed PHEV powertrains can reduce fuel consumption while increasing vehicle utility and performance.
Journal Article

Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid Turboelectric Aircraft

2020-03-10
2020-01-0050
Hybrid-electric gas turbine generators are considered a promising technology for more efficient and sustainable air transportation. The Ohio State University is leading the NASA University Leadership Initiative (ULI) Electric Propulsion: Challenges and Opportunities, focused on the design and demonstration of advanced components and systems to enable high-efficiency hybrid turboelectric powertrains in regional aircraft to be deployed in 2030. Within this large effort, the team is optimizing the design of the battery energy storage system (ESS) and, concurrently, developing a supervisory energy management strategy for the hybrid system to reduce fuel burn while mitigating the impact on the ESS life. In this paper, an energy-based model was developed to predict the performance of a battery-hybrid turboelectric distributed-propulsion (BHTeDP) regional jet.
X