Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations

2016-11-16
2016-01-9048
Since the mechanisms leading to cyclic combustion variabilities in direct injection gasoline engines are still poorly understood, advanced computational studies are necessary to be able to predict, analyze and optimize the complete engine process from aerodynamics to mixing, ignition, combustion and heat transfer. In this work the Scale-Adaptive Simulation (SAS) turbulence model is used in combination with a parameterized lagrangian spray model for the purpose of predicting transient in-cylinder cold flow, injection and mixture formation in a gasoline engine. An existing CFD model based on FLUENT v15.0 [1] has been extended with a spray description using the FLUENT Discrete Phase Model (DPM). This article will first discuss the validation of the in-cylinder cold flow model using experimental data measured within an optically accessible engine by High Speed Particle Image Velocimetry (HS-PIV).
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

1990-02-01
900496
Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines

2008-06-23
2008-01-1606
In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Benefits of GTL Fuel in Vehicles Equipped with Diesel Particulate Filters

2009-06-15
2009-01-1934
Synthetic fuels are expected to play an important role for future mobility, because they can be introduced seamlessly alongside conventional fuels without the need for new infrastructure. Thus, understanding the interaction of GTL fuels with modern engines, and aftertreatment systems, is important. The current study investigates potential benefits of GTL fuel in respect of diesel particulate filters (DPF). Experiments were conducted on a Euro 4 TDI engine, comparing the DPF response to two different fuels, normal diesel and GTL fuel. The investigation focused on the accumulation and regeneration behavior of the DPF. Results indicated that GTL fuel reduced particulate formation to such an extent that the regeneration cycle was significantly elongated, by ∼70% compared with conventional diesel. Thus, the engine could operate for this increased time before the DPF reached maximum load and regeneration was needed.
Technical Paper

Simulation Based Analysis of Test Results

2010-04-12
2010-01-1013
The use of a newly developed approach results in a highly accurate three dimensional analysis of the occupant movement. The central point of the new method is the calculation of precise body-trajectories by fitting standard sensor-measurements to video analysis data. With the new method the accuracy of the calculated trajectories is better than 5 to 10 millimeters. These body trajectories then form the basis for a new multi-body based numerical method, which allows the three dimensional reconstruction of the dummy kinematics. In addition, forces and moments acting on every single body are determined. In principle, the body movement is reconstructed by prescribing external forces and moments to every single body requiring that it follows the measured trajectory. The newly developed approach provides additional accurate information for the development engineers. For example the motion of dummy body parts not tracked by video analysis can be determined.
Technical Paper

The Application of Virtual Engine in a PSA 1.41 SI Engine

2010-10-06
2010-36-0153
Nowadays, due to the high competitiveness in the automotive market, the car manufacturers and the engine developers are concentrating as many efforts as possible in order to diminish the lead-time to production and to promote cost reductions of their engine developments. As a consequence, many systems and component tests are being substituted by numerical simulations, allowing a significant reduction in the amount of engine and bench tests. The integration of individual numerical simulation tools generates the philosophy of Virtual Engine Development, which is based on the concept of simulating as much as possible the entire engine as well as its components behaviors. This paper presents the application of Virtual Engine Development (VED) in a PSA 1.4l SI engine development. Theoretical results of engine performance as well as powercell components behavior such as piston, rings, conrod, bearings, liner, engine block and cylinder head, among others, are presented and discussed.
Technical Paper

New ways of fluid flow control in automobiles: Experience with exhaust gas aftertreatmetn control

2000-06-12
2000-05-0299
Flow control by fluidic devices - without moving parts - offers advantages of reliability and low cost. As an example of their automobile application based on authors'' long-time experience the paper describes a fluidic valve for switching exhaust gas flow in a NOx absorber into a by-pass during regeneration phase. The unique feature here is the fluidic valve being of monostable and of axisymmetric design, integrated into the absorber body. After development in aerodynamic laboratory, the final design was tested on engine test stand and finally in a car. This proved that the performance under high temperature and pulsation existing in exhaust systems is reliable and promising. Fluidic valves require, however, close matching with aerodynamic load. To optimize the exhaust system layout for the whole load-speed range and reaching minimum counter- pressure, both the components of exhaust system and control strategy have to be properly adopted.
Technical Paper

Structural front unit global approach

2001-06-04
2001-06-0232
The structural design of current vehicle front units has to account for an increasing number of constraints: improvement of real-world performance in safety for occupants and others road users, perform in the various ratings and meet future regulations. Therefore the structural car design is the result of a compromise between pedestrian protection, car-to-car compatibility and self- protection. In addition to these safety considerations, reparability constraints are becoming more and more demanding and intrusive toward the other safety requirements. The need to reduce emissions through fuel consumption control requires a reduction of the overall body weight which leads usually to more difficulties to achieve a correct structural behavior. Some of these constraints lead to solutions which are in opposition and in general to unsatisfactory compromises. It is suggested to develop a more comprehensive approach in order to better take into account both safety requirements and reparability.
Technical Paper

Simplified models for passive safety engineering

2001-06-04
2001-06-0223
In order to reduce delays of development of new vehicles, PSA has been using since 1998 a strategy based on sharing conception into several and hierarchical steps (V cycle). At the very beginning of a project, when only a few information are known, classical (and complex) FE models are replaced by simplified models, composed of sets of springs and loads elements containing properties (flexion, compression, shear) equivalent to complex FE pieces. Up to now, these simplified models are created using FE models of vehicle with approximately same architecture. Sets of spring elements and properties are adjusted in order to reproduce FE model behavior. When simplified models behavior is judged representative of the physics, they can be used for conducting many investigations not only for studying a wide range of design parameters but also for evaluating the robustness of a specific design.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Compatibility: Causes, Constraints, Improvements and Evaluation Proposal

2002-03-04
2002-01-1023
Accident studies conducted during the last twenty-five years clearly show that car to car head-on collision is a major impact configuration to take into account in order to improve safety on the roads. With new self protection ratings all cars offer equivalent behaviour against a fixed obstacle. So, in the future, the main progress will have to be made in car to car compatibility. Recent studies have shown the feasibility of designing compatible cars for both structure behaviour and occupant protection. However, some requirements on front unit design could make this aim more difficult to achieve. We suggest developping a more comprehensive approach in order to better take into account all the constraints.
Technical Paper

Dilution Interest on Turbocharged SI Engine Combustion

2003-03-03
2003-01-0629
This paper presents a prospective combustion study about dilution effects on turbocharged SI engine at full load. It proposes a comparative analysis between lean burn and cooled exhaust gas recirculation (EGR) operation as knock improvement artifice in substitute of enrichment. The study was led on a four cylinder 2L engine on stationary test bench. A specific EGR circuit was designed in order to achieve high control of the temperature and mass flow of the recirculated gas. Thanks to instantaneous pressure cylinder transducers, a combustion analysis was carried out using an home-made code. 1-D simulations (WAVE code) were used to complete the analysis on volumetric efficiency and turbocharger behaviour. A real advantage of cooled EGR was observed in the study compared to lean burn or enrichment in terms of performance, heat exchange and specific fuel consumption.
Technical Paper

Development of a Direct Injection Spark Ignition Engine Test for Injector Fouling

2003-05-19
2003-01-2006
Direct Injection Spark Ignition (DISI) engines are known to be sensitive to injector fouling. To evaluate the effectiveness of detergent additives and the influence of fuel parameters on injector fouling, a new DISI engine test has been developed, using a 2.0 l stoichiometric homogeneous DI engine on a test bench. Severe engine running conditions have been found to lead to a high amount of deposits on the injector nozzle over a short period of time (“one day” procedure). Injector fouling is measured using a fuel flow measurement procedure representative of injector operating conditions (opening time and pressure). This procedure has proved to be reliable and repeatable with different gasoline fuels and additives being evaluated. The influence of the base fuel and the effect of the composition and the dosages levels of detergent additives (keep-clean and clean-up properties) are demonstrated with the test method.
Technical Paper

Efficient Methodology for Automotive Powertrain Acoustic Radiation Analysis

2016-06-15
2016-01-1794
In automotive NVH, the noise generated by a powertrain is still one of the major noise sources especially at low and mid vehicle velocity. For this reason automotive OEMs are continuously focusing on methods to efficiently analyze this noise source. For this purpose, a well-established simulation methodology can provide results thoroughly, within a limited amount of time and with a reduced cost contrary to experiments which are involved in late design phases and are more expensive. This paper aims at presenting an approach to simulate efficiently the acoustic radiation from automotive components. With this aim in mind, the acoustic response of a realistic powertrain unit subjected to working conditions ranging from 1000 RPM to 4500 RPM is studied until 3000 Hz. Several radiating boundary conditions will be assessed in order to detect the most efficient set-up for this kind of problem and to extract the optimized modeling guidelines.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

Interaction Between Gasoline Properties and Engine Management System and Effects on 3-Way Catalyst Efficiency

1997-10-01
972839
The EPEFE study (European Programme on Emissions, Fuels and Engine Technologies), /1/ and other programmes have identified an increase in tailpipe NOx emissions with reduced gasoline aromatics content for modern 3-way controlled catalyst vehicles. This effect occurs with fully warmed-up catalyst under closed-loop operation. In order to understand the reasons for this effect VW and Shell have mechanistically investigated the effects of fuel properties on EMS (engine management system) and catalyst performance. Fuels with independent variation of oxygen, aromatics and mid-range volatility were tested in different VW engines. λ was monitored using sensors located both pre and post catalyst. The results confirmed that reducing gasoline aromatics content reduced engine-out emissions but increased tailpipe NOx emissions. It could be shown that differences in H/C ratio led to differences in the hydrogen content of engine-out emissions which affected the reading of the λ sensor.
X