Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Modeling of Three Way Catalyst Behavior Under Steady and Transient Operations in a Stoichiometric Natural Gas Fueled Engine

2021-09-05
2021-24-0074
Methane abatement in the exhaust gas of natural gas engines is much more challenging in respect to the oxidation of other higher order hydrocarbons. Under steady state λ sweep, the methane conversion efficiency is high at exact stoichiometric, and decreases steeply under both slightly rich and slightly lean conditions. Transient lean to rich transitions can improve methane conversion at the rich side. Previous experimental work has attributed the enhanced methane conversion to activation of methane steam reforming. The steam reforming rate, however, attenuates over time and the methane conversion rate gradually converges to the low steady state values. In this work, a reactor model is established to predict steady state and transient transition characteristics of a three-way catalyst (TWC) mounted in the exhaust of a natural gas heavy-duty engine.
Journal Article

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

2017-09-04
2017-24-0043
The interaction of turbulent premixed methane combustion with the surrounding flow field can be studied using optically accessible test rigs such as a rapid compression expansion machine (RCEM). The high flexibility offered by such a test rig allows its operation at various thermochemical conditions at ignition. However, limitations inherent to such test rigs due to the absence of an intake stroke do not allow turbulence production as found in IC-engines. Hence, means to introduce turbulence need to be implemented and the relevant turbulence quantities have to be identified in order to enable comparability with engine relevant conditions. A dedicated high-pressure direct injection of air at the beginning of the compression phase is considered as a measure to generate adjustable turbulence intensities at spark timing and during the early flame propagation.
Journal Article

Development, Verification, and Validation of Penn State Extended Range Electric Vehicle

2012-04-16
2012-01-1190
The Pennsylvania State University is one of 16 North American universities that participated in the EcoCAR advanced vehicle technology competition (http://www.ecocarchallenge.org/). A series-hybrid-electric vehicle based on a General Motors crossover SUV platform has been designed, built and tested for this purpose. The powertrain features a 1.3 L turbodiesel engine running on a B20 fuel system, a 75kW generator directly coupled to the engine and advanced lithium-ion batteries. In this paper, the vehicle architecture and control strategy are detailed and performance predictions (e.g., acceleration, fuel consumption and emissions) are presented. This includes discussion of the development process that led to the selected designs. The predicted performance is compared with data obtained on a chassis dynamometer and during on-road measurements over specified drive cycles.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

A Cooling System Effectiveness Prediction Methodology through the use of Analytical and Numerical Techniques

2010-04-12
2010-01-0623
The use of numerical techniques is widely accepted by manufactures in order to increase engine durability and performances and reduce emissions. The effective thermal load prediction is always considered a nodal point to correctly assess the coolant mass flow rate and jackets arrangement. In literature many approaches used to analyzed the in-cylinder heat transfer can be found and they can be classified as follows: methods based on the steady convective heat transfer, approaches based on the solution of the unsteady heat conduction equation by means of the knowledge of the temperature profile, approaches based on the energy conservation for the whole mass contained inside the cylinder. The purpose of this paper is to define a proper methodology to evaluate the thermal flow distribution and intensity inside the engine liner, head and coolant channel.
Technical Paper

Fuel Injection Effect on In-cylinder Formation and Exhaust Emission of Particulate from a 4-Stroke Engine for 2-Wheel Vehicles

2010-04-12
2010-01-0354
The small engine for two-wheel vehicles has generally high possibility to be optimized at low speeds and high loads. In these conditions fuel consumption and pollutants emission should be reduced maintaining the performance levels. This optimization can be realized only improving the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. It is known that, during the fuel injection phase in PFI SI engines, thin films of liquid fuel can form on the valves surface and on the cylinder walls. Successively the fuel films interact with the intake manifold and the combustion chamber gas flow. During the normal combustion process, it is possible to achieve gas temperature and mixture strength conditions that lead to fuel film ignition. This phenomenon can create diffusion-controlled flames that can persist well after the normal combustion event. These flames induce the emission of soot and unburned hydrocarbons.
Technical Paper

High Spatial Resolution Visualization and Spectroscopic Investigation of the Flame Front Propagation in the Combustion Chamber of a Scooter Engine

2010-04-12
2010-01-0351
The match between the increasing performance demands and stringent requirements of emissions and fuel consumption reduction needs a strong evolution in the 2-wheel vehicle technology. In particular many steps forward should be taken for the optimization of modern small motorcycle and scooter at low engine speeds and low temperature start. To this aim, the detailed understandings of thermal and fluid-dynamic phenomena that occur in the combustion chamber are fundamental. In this work, experimental activities were realized in the combustion chamber of a single-cylinder 4-stroke optical engine. The engine was equipped with a four-valve head of a commercial scooter engine. High spatial resolution imaging was used to follow the flame kernel growth and flame front propagation. Moreover, the effects of an abnormal combustion due to firing of fuel deposition near the intake valves and on the piston surface were investigated.
Technical Paper

Fuel Injection Pressure Effects on the Cold Start Performance of a GDI Engine

2003-10-27
2003-01-3163
The effects of reduced fuel injection pressure on the cold start performance of a GDI engine have been studied in a single-cylinder, optically-accessible research engine. Two Delphi Automotive Systems DI-G injectors, with included spray cone angles of 60° and 80° respectively, were studied. Both injectors are designed to operate at a nominal fuel line pressure of 10 MPa. For the study they were operated at several fuel feed pressures between 10 MPa and 2 MPa. Two start of injection timings (50° and 100° ATDC) were examined. Cold start performance was characterized by measurements of the GIMEP, COV of GIMEP, and total engine out UHCs. Simultaneous Planar Laser Induced Fluorescence (PLIF) and Mie Scattering images of the fuel spray were used to observe spray penetration, mixing, and in-cylinder fuel distribution throughout the intake and compression strokes. Ultimately these images were used to explain observed performance differences.
Technical Paper

Potential Methods for NOx Reduction from Biodiesel

2003-10-27
2003-01-3205
Interest in biodiesel is increasing in the United States because it is a renewable fuel source that decreases carbon monoxide, unburned hydrocarbon, and particulate matter emissions. Although it is more expensive than petroleum based diesel fuel, it is a cost-effective fuel for government agencies to obtain EPAct alternative fuel credits. However, a 20% biodiesel blend in diesel fuel (B20) causes an average increase in NOx emissions of 2-5%. The emissions of NOx are critical, especially in ozone non-attainment areas, making the increase with biodiesel problematic to its widespread use. Using cetane improving additives and modifying feedstock composition are two possible methods to reduce NOx emissions from biodiesel. This study further explores the feasibility of these methods.
Technical Paper

Development and Assessment of POD for Analysis of Turbulent Flow in Piston Engines

2011-04-12
2011-01-0830
Proper orthogonal decomposition (POD) has been proposed as an approach to analyze complex turbulent flows in piston engines, and as a basis for making quantitative, objective comparisons between in-cylinder velocity fields obtained using high-speed optical diagnostics (e.g., particle-image velocimetry - PIV) and numerical simulations (e.g., large-eddy simulation - LES). Here we explore several POD variants that can be used to analyze statistically nonstationary flows in time-varying domains, such as piston engines, in a well-defined and relatively simple geometric configuration. Systematic parametric studies are performed, including sensitivities of POD mode structure and mode convergence rate to spatial and temporal resolution. The use of POD to identify and quantify cycle-to-cycle flow variations is explored, and the ability of POD to distinguish between organized and disorganized flows is demonstrated.
Technical Paper

Experimental Study of Post Injection Scheduling for Soot Reduction in a Light-Duty Turbodiesel Engine

2016-04-05
2016-01-0726
This experimental study involves optimization of the scheduling of diesel post injections to reduce soot emissions from a light-duty diesel engine. Previous work has shown that certain post injection schedules can reduce engine-out soot emissions when compared to conventional injection schedules for the same engine load. The purpose of this study is to investigate the impact of post injection scheduling for a range of engine conditions on a light duty multicylinder turbodiesel engine (1.9L GM ZDTH). For each engine operating condition, a test grid was developed so that only two variables (post injection duration and the commanded dwell time between main injection and post injection) were varied, with all other conditions held constant, in order to isolate the effects of the post injection schedule. Results have identified two distinct regimes of post injection schedules that reduce soot emissions.
Technical Paper

Improvement of the Specific Fuel Consumption at Partial Load in SI Engines by Design Strategies based on High Compression Ratio

2014-11-11
2014-32-0060
In the last years, the engineering in the automotive industry is revolutionized by the continuous research of solutions for the reduction of consumptions and pollutant emissions. On this topic maximum attention is paid by both the legislative bodies and the costumers. The more and more severe limitations in pollutant and CO2 emissions imposed by international standards and the increasing price of the fuel force the automotive research to more efficient and ecological engines. Commonly the standard approach for the definition of the engine parameters at the beginning of the design process is based on the wide-open throttle condition although, both in homologation cycles and in the daily usage of the scooters, the engines work mainly at partial load where the efficiency dramatically decreases. This aspect has recently become strongly relevant also for two wheeled vehicles especially for urban purpose.
Journal Article

Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System

2019-04-02
2019-01-1259
One promising method for reducing fuel consumption and emissions, particularly in heavy duty trucks, is platooning. As the distance between vehicles decreases, the following vehicles will experience less aerodynamic drag on the front of the vehicle. However, reducing the velocity of the air contacting the front of the vehicle could have adverse effects on the temperature of the engine. To compensate for this effect, the energy consumption of the engine cooling system might increase, ultimately limiting the overall improvements obtained with platooning. Understanding the coupling between drag reduction and engine cooling load requirement is key for successfully implementing platooning strategies. Additionally, in a Connected and Automated Vehicle (CAV) environment, where information of the future engine load becomes available, the operation of the cooling system can be optimized in order to achieve the maximum fuel consumption reduction.
X