Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Journal Article

Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

2015-04-14
2015-01-0855
The focus of the present study was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition.
Technical Paper

Polycyclic Aromatic Hydrocarbons Evolution and Interactions with Soot Particles During Fuel Surrogate Combustion: A Rate Rule-Based Kinetic Model

2021-09-05
2021-24-0086
Modeling combustion of transportation fuels remains a difficult task due to the extremely large number of species constituting commercial gasoline and diesel. However, for this purpose, multi-component surrogate fuel models with a reduced number of key species and dedicated reaction subsets can be used to reproduce the physical and chemical traits of diesel and gasoline, also allowing to perform CFD calculations. Recently, a detailed surrogate fuel kinetic model, named C3 mechanism, was developed by merging high-fidelity sub-mechanisms from different research groups, i.e. C0-C4 chemistry (NUI Galway), linear C6-C7 and iso-octane chemistry (Lawrence Livermore National Laboratory), and monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) (ITV-RWTH Aachen and CRECK modelling Lab-Politecnico di Milano).
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Journal Article

Investigation of the Combustion Front Structure during Homogeneous Charge Compression Ignition Combustion via Laser Rayleigh Scattering Thermometry

2016-04-05
2016-01-0746
The combustion propagation mechanism of homogeneous charge compression ignition combustion was investigated using planar laser Rayleigh scattering thermometry, and was compared to that of spark-ignition combustion. Ethylene and dimethyl ether were chosen as the fuels for SI and HCCI experiments and have nearly constant Rayleigh scattering cross-sections through the combustion process. Beam steering at the entrance window limited the load range for HCCI conditions and confined the quantitative interpretation of the results to local regions over which an effective beam steering correction could be applied. The SI conditions showed a clear bimodal temperature behavior with a well-defined interface between reactants and products. The HCCI results showed large regions that were partially combusted, i.e., at a temperature above the reactants but below the adiabatic flame temperature. Dual-imaging experiments confirm that the burned region was progressing towards the fully burned state.
Journal Article

Exploring the Role of Reactivity Gradients in Direct Dual Fuel Stratification

2016-04-05
2016-01-0774
Low-temperature combustion (LTC) strategies have been an active area of research due to their ability to achieve high thermal efficiency while avoiding the formation of NOx and particulate matter. One of the largest challenges with LTC is the relative lack of authority over the heat release rate profile, which, depending on the particular injection strategy, either limits the maximum attainable load, or creates a tradeoff between noise and efficiency at high load conditions. We have shown previously that control over heat release can be dramatically improved through a combination of reactivity stratification in the premixed charge and a diffusion-limited injection that occurs after the conclusion of the low-temperature heat release, in a strategy called direct dual fuel stratification (DDFS).
Journal Article

Experimental and Numerical Analyses of Liquid and Spray Penetration under Heavy-Duty Diesel Engine Conditions

2016-04-05
2016-01-0861
The modeling of fuel sprays under well-characterized conditions relevant for heavy-duty Diesel engine applications, allows for detailed analyses of individual phenomena aimed at improving emission formation and fuel consumption. However, the complexity of a reacting fuel spray under heavy-duty conditions currently prohibits direct simulation. Using a systematic approach, we extrapolate available spray models to the desired conditions without inclusion of chemical reactions. For validation, experimental techniques are utilized to characterize inert sprays of n-dodecane in a high-pressure, high-temperature (900 K) constant volume vessel with full optical access. The liquid fuel spray is studied using high-speed diffused back-illumination for conditions with different densities (22.8 and 40 kg/m3) and injection pressures (150, 80 and 160 MPa), using a 0.205-mm orifice diameter nozzle.
Journal Article

Effects of Fuel Chemistry and Spray Properties on Particulate Size Distributions from Dual-Fuel Combustion Strategies

2017-03-28
2017-01-1005
The effect of direct-injected fuel on particle size distributions (PSDs) of particulate matter emitted from dual-fuel combustion strategies was investigated. The PSD data were acquired from a light-duty single-cylinder diesel engine operated using conventional diesel combustion (CDC) and two diesel/natural gas dual-fuel combustion strategies. Three different direct-injection (DI) fuels (diesel, 2,6,10-trimethyldodecane, and a primary reference fuel blend) and two different injector nozzles were studied. The DI fuels were chosen to have similar energy and ignition characteristics (heat of combustion and cetane number) but different physical and chemical properties (volatility, aromatics %, viscosity, density). The two nozzles (with different orifice diameter and spray angle) allowed a wide range in DI fuel quantity for the dual-fuel combustion strategies.
Journal Article

Experimental Characterization of High-Pressure Impinging Sprays for CFD Modeling of GDI Engines

2011-04-12
2011-01-0685
Today, Direct-Injection systems are widely used on Spark-Ignition engines in combination with turbo-charging to reduce the fuel-consumption and the knock risks. In particular, the spread of Gasoline Direct Injection (GDI) systems is mainly related to the use of new generations of multi-hole, high-pressure injectors whose characteristics are quite different with respect to the hollow-cone, low-pressure injectors adopted in the last decade. This paper presents the results of an experimental campaign conducted on the spray produced by a GDI six-holes injector into a constant volume vessel with optical access. The vessel was filled with air at atmospheric pressure. Different operating conditions were considered for an injection pressure ranging from 3 to 20 MPa. For each operating condition, spray images were acquired by a CCD camera and then post processed to evaluate the spray penetration and cone angles.
Journal Article

Numerical and Experimental Investigation on Vehicles in Platoon

2012-04-16
2012-01-0175
Many studies have been carried out to optimize the aerodynamic performances of a single car or a single vehicle. In present days the traffic increases and sophisticated technologies are developing to guarantee the drivers safety, to minimize the fuel consumption and be more environmentally friendly. Within this research area a new technique that is being studied is Platooning: this means that different vehicles travel in a configuration that minimizes the aerodynamic drag and therefore the fuel consumption and the longitudinal space. In the present study platoons with different vehicles and configurations are taken into account, to analyze the influence of car shape and relative distance between the vehicles. The research has been carried out using CFD techniques to investigate the different flow fields around different platoons, while wind tunnel tests have been used to validate the results of the CFD simulations.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

Oxygen and Propellant Extraction from Martian Atmosphere: Feasibility Study of a Small Technological Demonstration Plant

2008-06-29
2008-01-1984
The sustainability of Martian outposts development is strongly based on the capability of achieving a high level of autonomy both in terms of operations management and of resources availability. In situ production of consumables is a key point to allow humans to work and live on Mars avoiding or limiting the need for re-supplies of materials from Earth. Required consumables can be produced in situ exploiting the locally available resources, but also by means of green-houses and waste recycle systems. Dedicated robotic missions for in situ demonstration of this type of technologies are a fundamental step of the Martian In Situ Resources Utilization (ISRU) development roadmap. This paper is focused on the extraction of oxygen and fuels (e.g. methane) from the Martian atmosphere, and presents a feasibility study for a small technological demonstration plant.
Technical Paper

Improving Upon Best Available Technology: A Clean Flex Fuel Snowmobile

2008-09-09
2008-32-0049
The University of Wisconsin-Madison Snowmobile Team has designed and constructed a clean, quiet, high performance snowmobile for entry in the 2008 Society of Automotive Engineers' Clean Snowmobile Challenge. Built on a 2003 cross-country touring chassis, this machine features a 750 cc fuel-injected four-stroke engine equipped with a fuel sensor which allows operation ranging from regular gasoline to an 85% blend of ethanol and gasoline (E85). The engine has been customized with a Mototron control system which allows for full engine optimization using a range of fuels from E00 to E85. Utilizing a heated oxygen sensor and a 3-way catalyst customized for this engine by W.C. Heraeus-GmbH, this sled reduces NOx, HC and CO emissions by up to 89% to an average specific mass of 0.484, 0.154, 4.94 g/kW-hr respectively. Finally, the Mototron system also allowed Wisconsin to extract another 4 kW from the Weber 750cc engine; producing 45 kW and 65 Nm of torque.
Technical Paper

Design and Evaluation of the ELEVATE Two-stroke Automotive Engine

2003-03-03
2003-01-0403
ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) was a research project part funded by the European Commission to design and develop a compact and efficient gasoline two-stroke automotive engine. Five partners were involved in the project, IFP (Institut Français Du Pétrole) who were the project leaders, Lotus, Opcon (Autorotor and SEM), Politecnico di Milano and Queen's University Belfast. The general project targets were to achieve Euro 3 emissions compliance without DeNOx catalisation, and a power output of 120 kW at 5000 rev/min with maximum torque of 250 Nm at 2000 rev/min. Specific targets were a 15% reduction in fuel consumption compared to its four-stroke counterpart and a size and weight advantage over the four-stroke diesel with significant reduction in particulate and NOx emissions. This paper describes the design philosophy of the engine as well as the application of the various partner technologies used.
Technical Paper

A Statistical Description of Knock Intensity and Its Prediction

2017-03-28
2017-01-0659
Cycle-to-cycle variation in combustion phasing and combustion rate cause knock to occur differently in every cycle. This is found to be true even if the end gas thermo-chemical time history is the same. Three cycles are shown that have matched combustion phasing, combustion rate, and time of knock onset, but have knock intensity that differs by a factor of six. Thus, the prediction of knock intensity must include a stochastic component. It is shown that there is a relationship between the maximum possible knock intensity and the unburned fuel energy at the time of knock onset. Further, for a small window of unburned energy at knock onset, the probability density function of knock intensity is self similar when scaled by the 95th percentile of the cumulative distribution, and log-normal in shape.
Technical Paper

Pressure-Based Knock Measurement Issues

2017-03-28
2017-01-0668
Highly time resolved measurements of cylinder pressure acquired simultaneously from three transducers were used to investigate the nature of knocking combustion and to identify biases that the pressure measurements induce. It was shown by investigating the magnitude squared coherence (MSC) between the transducer signals that frequency content above approximately 40 kHz does not originate from a common source, i.e., it originates from noise sources. The major source of noise at higher frequency is the natural frequency of the transducer that is excited by the impulsive knock event; even if the natural frequency is above the sampling frequency it can affect the measurements by aliasing. The MSC analysis suggests that 40 kHz is the appropriate cutoff frequency for low-pass filtering the pressure signal. Knowing this, one can isolate the knock event from noise more accurately.
Technical Paper

Numerical Estimation of Asymmetry of In-Cylinder Flow in a Light Duty Direct Injection Engine with Re-Entrant Piston Bowl

2017-10-08
2017-01-2209
Partially premixed combustion (PPC) can be applied to decrease emissions and increase fuel efficiency in direct injection, compression ignition (DICI) combustion engines. PPC is strongly influenced by the mixing of fuel and oxidizer, which for a given fuel is controlled mainly by (a) the fuel injection, (b) the in-cylinder flow, and (c) the geometry and dynamics of the engine. As the injection timings can vary over a wide range in PPC combustion, detailed knowledge of the in-cylinder flow over the whole intake and compression strokes can improve our understanding of PPC combustion. In computational fluid dynamics (CFD) the in-cylinder flow is sometimes simplified and modeled as a solid-body rotation profile at some time prior to injection to produce a realistic flow field at the moment of injection. In real engines, the in-cylinder flow motion is governed by the intake manifold, the valve motion, and the engine geometry.
Technical Paper

Gas Exchange and Injection Modeling of an Advanced Natural Gas Engine for Heavy Duty Applications

2017-09-04
2017-24-0026
The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
Technical Paper

Effects of Turbulence Modulation Addition in OpenFOAM® Toolkit on High Pressure Fuel Sprays

2011-04-12
2011-01-0820
The OpenFOAM® CFD methodology is nowadays employed for simulation in internal combustion engines and a lot of work has been done for an appropriate description of all complex phenomena. At the moment in the RANS turbulence models available in the OpenFOAM® toolbox the turbulence modulation is not yet included, and the present work analyzes the predictive capabilities of the code in simulating high injection pressure fuel sprays after modeling the influence of the dispersed phase on the turbulence structure. Different experiments were employed for the validation. At first, non-evaporating diesel spray was considered in a constant volume and quiescent vessel. The validation was performed via the available experimental spray evolution in terms of penetrations and spatial/temporal fuel distributions. Then the Sandia combustion chamber was chosen for diesel spray simulation in non-reacting conditions.
Technical Paper

Cyber Tyre: A Novel Sensor to Improve Vehicle's Safety

2011-04-12
2011-01-0990
Tires will be protagonists in the new European regulations for safety and fuel economy: in 2012 a tire pressure monitoring system will be mandatory for all new vehicles, enabling as natural consequence the development of the so called “intelligent tire”, able to capture all the relevant information of the contact between the road surface and the rubber, a starting point for new functions development to improve safety and reduce fuel consumption of all vehicles. A description of the methodologies that can be used to extract features from the tires, based on the experience of the development of Cyber Tyre, a high performance sensorized tire, is included in this work; comparison with the same information gained thorough ordinary sensors are provided too. The paper also presents some interesting examples of how data, coming from Cyber Tyres, can be exploited to improve the safety margins of a vehicle, preventing the critical operating condition represented by hydroplaning.
X