Refine Your Search

Topic

Author

Search Results

Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Use of an Innovative Predictive Heat Release Model Combined to a 1D Fluid-Dynamic Model for the Simulation of a Heavy Duty Diesel Engine

2013-09-08
2013-24-0012
An innovative 0D predictive combustion model for the simulation of the HRR (heat release rate) in DI diesel engines was assessed and implemented in a 1D fluid-dynamic commercial code for the simulation of a Fiat heavy duty diesel engine equipped with a Variable Geometry Turbocharger system, in the frame of the CORE (CO2 reduction for long distance transport) Collaborative Project of the European Community, VII FP. The 0D combustion approach starts from the calculation of the injection rate profile on the basis of the injected fuel quantities and on the injection parameters, such as the start of injection and the energizing time, taking the injector opening and closure delays into account. The injection rate profile in turn allows the released chemical energy to be estimated. The approach assumes that HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber.
Journal Article

Comparison between Internal and External EGR Performance on a Heavy Duty Diesel Engine by Means of a Refined 1D Fluid-Dynamic Engine Model

2015-09-06
2015-24-2389
The potential of internal EGR (iEGR) and external EGR (eEGR) in reducing the engine-out NOx emissions in a heavy-duty diesel engine has been investigated by means of a refined 1D fluid-dynamic engine model developed in the GT-Power environment. The engine is equipped with Variable Valve Actuation (VVA) and Variable Geometry Turbocharger (VGT) systems. The activity was carried out in the frame of the CORE Collaborative Project of the European Community, VII FP. The engine model integrates an innovative 0D predictive combustion algorithm for the simulation of the HRR (heat release rate) based on the accumulated fuel mass approach and a multi-zone thermodynamic model for the simulation of the in-cylinder temperatures. NOx emissions are calculated by means of the Zeldovich thermal and prompt mechanisms.
Journal Article

Model-Based Control of BMEP and NOx Emissions in a Euro VI 3.0L Diesel Engine

2017-09-04
2017-24-0057
A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent.
Journal Article

Steady-State and Transient Operations of a Euro VI 3.0L HD Diesel Engine with Innovative Model-Based and Pressure-Based Combustion Control Techniques

2017-03-28
2017-01-0695
In the present work, different combustion control strategies have been experimentally tested in a heavy-duty 3.0 L Euro VI diesel engine. In particular, closed-loop pressure-based and open-loop model-based techniques, able to perform a real-time control of the center of combustion (MFB50), have been compared with the standard map-based engine calibration in order to highlight their potentialities. In the pressure-based technique, the instantaneous measurement of in-cylinder pressure signal is performed by a pressure transducer, from which the MFB50 can be directly calculated and the start of the injection of the main pulse (SOImain) is set in a closed-loop control to reach the MFB50 target, while the model-based approach exploits a heat release rate predictive model to estimate the MFB50 value and sets the corresponding SOImain in an open-loop control. The experimental campaign involved both steady-state and transient tests.
Technical Paper

Steering Behavior of an Articulated Amphibious All-Terrain Tracked Vehicle

2020-04-14
2020-01-0996
This paper presents a study related to an Articulated Amphibious All-Terrain Tracked Vehicle (ATV) characterized by a modular architecture. The ATV is composed by two modules: the first one hosts mainly the vehicle engine and powertrain components, meanwhile the second one can be used for goods transportation, personnel carrier, crane and so on. The engine torque is transmitted to the front axle sprocket wheel of each module and finally distributed on the ground through a track mechanism. The two modules are connected through a multiaxial joint designed to guarantee four relative degrees of freedom. To steer the ATV, an Electro Hydraulic Power System (EHPS) is adopted, thus letting the vehicle steerable on any kind of terrain without a differential tracks speed. The paper aims to analyze the steady-state lateral behavior of the ATV on a flat road, through a non-linear mathematical vehicle model built in Matlab/Simulink environment.
Journal Article

Mild Catalytic DPF Regeneration and Related CO Emissions in Commercial Vehicles

2008-10-07
2008-01-2643
La1-xAxNi1-yByO3 nanostructured perovskite-type oxides catalysts (where A = Na, K, Rb and B = Cu; x = 0, 0.2 and y = 0, 0.05, 0.1), also supporting 2% in weight of gold, were prepared via the so-called “Solution Combustion Synthesis (SCS)” method, and characterized by means of XRD, BET, FESEM-EDS and TEM analyses. The performance of these catalysts towards the simultaneous oxidation of soot and CO was evaluated. The 2 wt.% Au-La0.8K0.2Ni0.9Cu0.1O3 showed the best performance with a peak carbon combustion temperature of 367 °C and the half conversion of CO reached at 141 °C. The same nanostructured catalyst, deposited by in situ SCS directly over a SiC filter and tested on real diesel exhaust gases, fully confirmed the encouraging results obtained on the powder catalyst.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Technical Paper

Experimental-Numerical Correlation of a Multi-Body Model for Comfort Analysis of a Heavy Truck

2020-04-14
2020-01-0768
In automotive market, today more than in the past, it is very important to reduce time to market and, mostly, developing costs before the final production start. Ideally, bench and on-road tests can be replaced by multi-body studies because virtual approach guarantees test conditions very close to reality and it is able to exactly replicate the standard procedures. Therefore, today, it is essential to create very reliable models, able to forecast the vehicle behavior on every road condition (including uneven surfaces). The aim of this study is to build an accurate multi-body model of a heavy-duty truck, check its handling performance, and correlate experimental and numerical data related to comfort tests for model tuning and validation purposes. Experimental results are recorded during tests carried out at different speeds and loading conditions on a Belgian blocks track. Simulation data are obtained reproducing the on-road test conditions in multi-body environment.
Journal Article

Semitrailer Torsional Stiffness Data for Improved Modeling Fidelity

2011-09-13
2011-01-2163
Vehicle dynamics models employed in heavy truck simulation often treat the semitrailer as a torsionally rigid member, assuming zero deflection along its longitudinal axis as a moment is applied to its frame. Experimental testing, however, reveals that semitrailers do twist, sometimes enough to precipitate rollover when a rigid trailer may have remained upright. Improving the model by incorporating realistic trailer roll stiffness values can improve assessment of heavy truck dynamics, as well as an increased understanding of the effectiveness of stability control systems in limit handling maneuvers. Torsional stiffness measurements were conducted by the National Highway Traffic Safety Administration (NHTSA) for eight semitrailers of different types, including different length box vans, traditional and spread axle flat beds, and a tanker.
Technical Paper

DPF Supporting Nano-Structured Perovskite Catalysts for NOx and Diesel Soot Emission Control in Commercial Vehicles

2007-10-30
2007-01-4173
Nano-structured perovskite-type oxides catalysts La1-xAxFe1-yByO3 (where A = Na, K, Rb and B = Cu), prepared by the Solution Combustion Synthesis (SCS) method and characterized by BET, XRD, FESEM, AAS and catalytic activity tests in microreactors and engine bench, proved to be effective in the simultaneous removal of soot and NO, the two prevalent pollutants in diesel exhaust gases in the temperature range 350-450°C. The best compromise between soot and nitrogen oxide abatement was shown by La-K-Cu-FeO3 catalyst which displayed the highest catalytic activity towards carbon combustion and the highest NO conversion activity.
Technical Paper

Reduction in Pollutant Emissions in an “Off-Road” DI Diesel Engine by Means of Exhaust Gas Recirculation

2011-11-08
2011-32-0610
The aim of this work was to obtain a reduction in pollutant emissions, in particular for NOx and Soot, in an “Off-Road” DI Diesel Engine, equipped with a common rail injection system, by means of exhaust gas recirculation (EGR). First, an engine simulation was performed using a one-dimensional code, and the model was then calibrated with experimental results obtained from a previous research work conducted on bench tests. Thanks to the engine model, specific emissions were then determined in all conditions, that is, in “eight modes” pertaining to engine loads and speeds. Both the injection advance and EGR amount were changed for all of these conditions in order to obtain the best compromise between fuel consumption and emissions and to respect standard regulations. The investigation was performed using both the Wiebe and a more complex combustion models; this latter allows in fact to determine the soot emission through the Nagle-Strickland model.
Technical Paper

Numerical Simulation of the Combustion Process of a High EGR, High Injection Pressure, Heavy Duty Diesel Engine

2017-09-04
2017-24-0009
To comply with Stage IV emission standard for off-road engines, Kohler Engines has developed the 100kW rated KDI 3.4 liters diesel engine, equipped with DOC and SCR. Based on this engine, a research project in collaboration between Kohler Engines, Ricardo, Denso and Politecnico di Torino was carried out to exploit the potential of new technologies to meet the Stage IV and beyond emission standards. The prototype engine was equipped with a low pressure cooled EGR system, two stage turbocharger, high pressure fuel injection system capable of very high injection pressure and DOC+DPF aftertreatment system. Since the Stage IV emission standard sets a 0.4 g/kWh NOx limit for the steady state test cycle (NRSC), that includes full load operating conditions, the engine must be operated with very high EGR rates (above 30%) at very high load.
Technical Paper

Effects of ABS Controller Parameters on Heavy Truck Model Braking Performance

2006-10-31
2006-01-3482
This paper covers research conducted at the National Highway Traffic Safety Administration's Vehicle Research and Test Center (VRTC) examining the performance of semitrailer anti-lock braking systems (ABS). For this study, a vehicle dynamics model was constructed for the combination of a 4×2 tractor and a 48-foot trailer, using TruckSim. ABS models for the tractor and trailer, as well as brake dynamics and surface friction models, were created in Simulink so that the effect of varying ABS controller parameters and configurations on semitrailer braking performance could be studied under extreme braking maneuvers. The longitudinal and lateral performances of this tractor-trailer model were examined for a variety of different trailer ABS controller models, including the 2s1m, 4s2m, and 4s4m configurations. Also, alternative controllers of the same configuration were studied by varying the parameters of the 2s1m controller.
Technical Paper

State of the Art and Future Trends of Electrification in Agricultural Tractors

2022-09-16
2022-24-0002
Hybrid and electric powertrains are experiencing a consistent growth in the automotive field demonstrating their effectiveness in reducing pollutant emissions especially in urban areas. Recently these technologies started to be investigated in the field of work machineries as possible solution to meet increasingly stricter regulations on pollutant emissions. The construction field was the first to recognize the benefits of a partial or total electrification of a work machinery. Nowadays, the consolidation of the technology allowed for its consistent diffusion in the more conservative agricultural field where manufacturers are struggling to meet emissions regulations without losing in terms of work performance. Tractors manufacturers are the most affected actors because of the difficulty to integrate bulky gas aftertreatment systems on board of their vehicle.
Technical Paper

Co-Simulation of a Specialized Tractor for Autonomous Driving in Orchards

2022-09-16
2022-24-0025
The concept of autonomous driving is becoming increasingly familiar in the automotive and “in-door” automation systems fields. Furthermore, the industrial development is focusing its efforts on industry 4.0, whose some main features are data transfer, programming, systems interconnection and automation. The agricultural sector just recently has experienced the first examples of autonomous agricultural vehicles, although agricultural mechanization has reached a good level of automation. Indeed, many examples of automatic machineries are already present in the market such as little robots for the execution of some operations. This work focuses on modelling and simulation of a self-driving orchard tractor. The main goal was to reproduce the behaviour of the specialized vehicle, moving in an orchard or a vineyard and conducting automatic or semi-automatic operations.
Technical Paper

A Commercial Excavator: Analysis, Modelling and Simulation of the Hydraulic Circuit

2012-09-24
2012-01-2040
The paper addresses some aspects of an ongoing research on a commercial compact excavator. The interest is focused on the analysis and modelling of the whole hydraulic circuit that, beside a load sensing variable displacement pump, features a stack of nine proportional directional control valves modules of which seven are of the load sensing type. Loads being sensed are the boom swing, boom, stick and bucket, right and left track motors and work tools; instead, the blade and the turret swing users do not contribute to the load sensing signal. Of specific interest are the peculiarities that were observed in the stack. In fact, to develop an accurate AMESim modelling, the stack was dismantled and all modules analysed and represented in a CAD environment as 3D parts. The load sensing flow generation unit was replaced on the vehicle by another one whose analysis and modelling have been developed using available design and experimental data.
Technical Paper

Modeling of a 6×4 Tractor and Trailers for Use in Real Time Hardware in the Loop Simulation for ESC Testing

2013-04-08
2013-01-0693
According to NHTSA's 2011 Traffic Safety Facts [1], passenger vehicle occupant fatalities continued the strong decline that has been occurring recently. In 2011, there were 21,253 passenger vehicles fatalities compared to 22,273 in 2010, and that was a 4.6% decrease. However; large-truck occupant fatalities increased from 530 in 2010 to 635 in 2011, which is a 20% increase. This was a second consecutive year in which large truck fatalities have increased (9% increase from 2009 to 2010). There was also a 15% increase in large truck occupant injuries from 2010. Moreover, the fatal crashes involving large trucks increased by 1.9%, in contrast to other-vehicle-occupant fatalities that declined by 3.6% from 2010. The 2010 accident statistics NHTSA's report reveals that large trucks have a fatal accident involvement rate of 1.22 vehicles per 100 million vehicle miles traveled compared to 1.53 for light trucks and 1.18 for passenger cars.
Technical Paper

The Development of a Heavy Truck ABS Model

2005-04-11
2005-01-0413
This paper discusses the improvement of a heavy truck anti-lock brake system (ABS) model currently used by the National Highway Traffic Safety Administration (NHTSA) in conjunction with multibody vehicle dynamics software. Accurate modeling of this complex system is paramount in predicting real-world dynamics, and significant improvements in model accuracy are now possible due to recent access to ABS system data during on-track experimental testing. This paper focuses on improving an existing ABS model to accurately simulate braking under limit braking maneuvers on high and low-coefficient surfaces. To accomplish this, an ABS controller model with slip ratio and wheel acceleration thresholds was developed to handle these scenarios. The model was verified through testing of a Class VIII 6×4 straight truck. The Simulink brake system and ABS model both run simultaneously with TruckSim, with the initialization and results being acquired through Matlab.
Technical Paper

Control Oriented Model of Cabin-HVAC System in a Long-Haul Trucks for Energy Management Applications

2022-03-29
2022-01-0179
Super Truck II is a 48V mild hybrid class 8 truck with an all auxiliary loads powered purely by the battery pack. Electric Heating Ventilation and Air Conditioning (HVAC) load is the most prominent battery load during the hotel period, when the truck driver is resting inside the sleeper. For the PACCAR Super Truck II (ST-II) project a 48 V battery system provides the required power during the hotel period. A cabin-HVAC model estimates the electric load on the 48V battery system, allowing the control system to implement an efficient energy management strategy that avoids engine idling during the hotel period. The thermal model accounts for the sun load due to the time of day and the geographic location of the truck during the hotel period. The cabin-HVAC model has two parts. First, a grey box model with two heat exchangers (Condenser and Evaporator) working in unison with refrigerant mass flow rate as an input and HVAC load as an output.
X