Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Testing and Validation of a Belted Alternator System for a Post-Transmission Parallel PHEV for the EcoCAR 3 Competition

2017-03-28
2017-01-1263
The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
X