Refine Your Search

Topic

Search Results

Journal Article

Brake System Performance at Higher Mileage

2017-09-17
2017-01-2502
The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems -when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers - something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
Technical Paper

Investigation of Fracture Behavior of Deep Drawn Automotive Part affected by Thinning with Shell Finite Elements

2020-04-14
2020-01-0208
In the recent decades, tremendous effort has been made in automotive industry to reduce vehicle mass and development costs for the purpose of improving fuel economy and building safer vehicles that previous generations of vehicles cannot match. An accurate modeling approach of sheet metal fracture behavior under plastic deformation is one of the key parameters affecting optimal vehicle development process. FLD (Forming Limit Diagram) approach, which plays an important role in judging forming severity, has been widely used in forming industry, and localized necking is the dominant mechanism leading to fracture in sheet metal forming and crash events. FLD is limited only to deal with the onset of localized necking and could not predict shear fracture. Therefore, it is essential to develop accurate fracture criteria beyond FLD for vehicle development.
Technical Paper

Customer Perception of Road-Induced Structural Feel

2020-04-14
2020-01-1080
Structural feel, or “vehicle feels solidly built” is a subjective measure that traditionally has been assessed by technical experts and executives. Vehicle programs’ timing and viability can be affected by these assessments. Objective measures would improve the vehicle development process. The first step in developing objective measures is to assess whether road-induced structural feel can be sensed by the customer. To this end, an internal drive clinic was conducted and proved to be an effective approach for obtaining customer perception of structural feel. Vehicles that spanned a range of excellent to poor structural feel were chosen by experts as part of the experimental design. The non-expert participants rank-ordered the vehicles’ structural feel performance in the order determined a priori by the experts. Results also indicate that the question “vehicle feels solidly built” is a good overall question for assessing structural feel.
Technical Paper

Edge-Quality Effects on Mechanical Properties of Stamped Non-Oriented Electrical Steel

2020-04-14
2020-01-1072
The market for electric vehicles and hybrid electric vehicles is expected to grow in the coming years, which is increasing interest in design optimization of electric motors for automotive applications. Under demanding duty cycles, the moving part within a motor, the rotor, may experience varying stresses induced by centrifugal force, a necessary condition for fatigue. Rotors contain hundreds of electrical steel laminations produced by stamping, which creates a characteristic edge structure comprising rollover, shear and tear zones, plus a burr. Fatigue properties are commonly reported with specimens having polished edges. Since surface condition is known to affect fatigue strength, an experiment was conducted to evaluate the effect of sample preparation on tensile and fatigue behavior of stamped specimens. Tensile properties were unaffected by polishing. In contrast, polishing was shown to increase fatigue strength by approximately 10-20% in the range of 105-107 cycles to failure.
Journal Article

Direct Aeroacoustic Simulation of Flow Impingement Noise in an Exhaust Opening

2011-05-17
2011-01-1517
Unusual noises during vehicle acceleration often reflect poorly on customer perception of product quality and must be removed in the product development process. Flow simulation can be a valuable tool in identifying root causes of exhaust noises created due to tailpipe openings surrounded by fascia structure. This paper describes a case study where an unsteady Computational Fluid Dynamics (CFD) simulation of the combined flow and acoustic radiation from an exhaust opening through fascia components provided valuable insight into the cause of an annoying flow noise. Simulation results from a coupled thermal/acoustic analysis of detailed tailpipe opening geometry were first validated with off-axis microphone spectra under wide open throttle acceleration. After studying the visualizations of unsteady flow velocity and pressure from the CFD, a problem that had proved difficult to solve by traditional “cut and try” methods was corrected rapidly.
Technical Paper

Testing Methods and Recommended Validation Strategies for Active Safety to Optimize Time and Cost Efficiency

2020-04-14
2020-01-1348
Given the current proliferation of active safety features on new vehicles, especially for Advanced Driver Assistance Systems (ADAS) and Highly Automated Driving (HAD) technologies, it is evident that there is a need for testing methods beyond a vehicle level physical test. This paper will discuss the current state of the art in the industry for simulation-based verification and validation (V&V) testing methods. These will include, but are not limited to, "Hardware-in-the-Loop (HIL)", “Software-in-the-Loop (SIL)”, “Model-in-the-Loop (MIL)”, “Driver-in-the-Loop (DIL)”, and any other suitable combinations of the aforementioned (XIL). Aspects of the test processes and needed components for simulation will be addressed, detailing the scope of work needed for various types of testing. The paper will provide an overview of standardized test aspects, active safety software validation methods, recommended practices and standards.
Technical Paper

Dynamic Impact Transient Bump Method Development and Application for Structural Feel Performance

2020-04-14
2020-01-1081
Road induced structural feel “vehicle feels solidly built” is strongly related to the vehicle ride [1]. Excellent structural feel requires both structural and suspension dynamics considerations simultaneously. Road induced structural feel is defined as customer facing structural and component responses due to tire force inputs stemming from the unevenness of the road surface. The customer interface acceleration and noise responses can be parsed into performance criteria to provide design and tuning vehicle integration program recommendations. A dynamic impact bump method is developed for vehicle level structural feel performance assessment, diagnostics, and development tuning. Current state of on-road testing has the complexity of multiple impacts, averaging multiple road induced tire patch impacts over a length of a road segment, and test repeatability challenges.
Technical Paper

HEV Architectures - Power Electronics Optimization through Collaboration Sub-topic: Inverter Design and Collaboration

2010-10-19
2010-01-2309
As the automotive industry quickly moves towards hybridized and electrified vehicles, the optimal integration of power electronics in these vehicles will have a significant impact not only on the cost, performance, reliability, and durability; but ultimately on customer acceptance and market success of these technologies. If properly executed with the right cost, performance, reliability and durability, then both the industry and the consumer will benefit. It is because of these interdependencies that the pace and scale of success, will hinge on effective collaboration. This collaboration will be built around the convergence of automotive and industrial technology. Where real time embedded controls mixes with high power and voltage levels. The industry has already seen several successful collaborations adapting power electronics to the automotive space in target vehicles.
Technical Paper

Virtual Powertrain Calibration at GM Becomes a Reality

2010-10-19
2010-01-2323
GM's R oad-to- L ab-to- M ath (RLM) initiative is a fundamental engineering strategy leading to higher quality design, reduced structural cost, and improved product development time. GM started the RLM initiative several years ago and the RLM initiative has already provided successful results. The purpose of this paper is to detail the specific RLM efforts at GM related to powertrain controls development and calibration. This paper will focus on the current state of the art but will also examine the history and the future of these related activities. This paper will present a controls development environment and methodology for providing powertrain controls developers with virtual (in the absence of ECU and vehicle hardware) calibration capabilities within their current desktop controls development environment.
Technical Paper

A Computational Fluid Dynamics (CFD) Model for Gear Churning

2018-04-03
2018-01-0401
This paper presents a computational fluid dynamics (CFD) model for predicting power losses associated with churning of oil by gears or other similar rotating components. The modeling approach and parameters are optimized to ensure the accuracy, robustness, and computational efficiency of these predictions. These studies include a look at two types of mesh and a turbulence model selection. The focus is on multiple reference frame (MRF) modeling technique for its computational efficiency advantage. Model predictions are compared to previously published experimental data [1] under varying operating conditions typical for an automotive transmission application. The model shows good agreement with the hardware both quantitatively and qualitatively, capturing the trends with speed and submersion level. The paper concludes with presenting some key lessons learned, and recommendation for future work to ultimately build a highly reliable tool as part of the virtual product development.
Technical Paper

System Engineering for Automated Software Update of Automotive Electronics

2018-04-03
2018-01-0750
In traditional automotive electronic design, software update has been a component oriented, manual process rather than a systematic designed in capability suitable for automation. In recent days as software content in vehicles grow, the need to update software in vehicles more frequently is becoming a necessity. Moreover, additional attributes for software updates, for example timely delivery of security related update for vehicles, desire to add features using software update, control cost of software updates, etc., requires a system engineered design rather than a component oriented approach. As the automobile domain utilizes various means of mobility (Combustion Engine, Hybrid, Battery, etc.) and various functional domains (Infotainment, Safety, Mobility, Telematics, ADAS (Advance Driving Assist service), Autonomous, etc.), to control the overall cost of future software update for such a diverse environment, it is beneficial to introduce automation in the software update process.
Technical Paper

Development of Production Control Algorithms for Hybrid Electric Vehicles by Using System Simulation: Technology Leadership Brief

2012-10-08
2012-01-9008
In an earlier paper, the authors described how Model-Based System Engineering could be utilized to provide a virtual Hardware-in-the-Loop simulation capability, which creates a framework for the development of virtual ECU software by providing a platform upon which embedded control algorithms may be developed, tested, updated, and validated. The development of virtual ECU software is increasingly valuable in automotive control system engineering because vehicle systems are becoming more complex and tightly integrated, which requires that interactions between subsystems be evaluated during the design process. Variational analysis and robustness studies are also important and become more difficult to perform with real hardware as system complexity increases. The methodology described in this paper permits algorithm development to be performed prior to the availability of vehicle and control system hardware by providing what is essentially a virtual integration vehicle.
Technical Paper

CAE Method for Automotive Remote Function Actuator System Range Simulation

2022-03-29
2022-01-0129
Remote Function Actuator (RFA) systems are widely used as the standard solution for conveniently accessing vehicles by remote control. To accelerate product development cycles and reduce engineering costs of physical test, a computer aided engineering (CAE) method has been developed to predict transmission range of the RFA system. Firstly, the detailed computational electromagnetic (CEM) models of the transmitting and receiving antennas were developed. Secondly, the articulated human model and the full vehicle meshed model were introduced to the CEM models to reflect the physical test environment. Lastly, the RFA system range model was built by including both the key fob held by an articulated human body and RFA module installed in the fully meshed vehicle. The transmission range could be extracted when the simulated received power reached the receiving sensitivity of the RFA module.
Technical Paper

Perspectives on the Transition from Hardware-Based Validation and Product Evaluation to Virtual Processes

2023-04-11
2023-01-0164
Accelerating product development cycles and incentives to reduce costs in product development are strong motivators to move to virtual development and validation processes. Challenges to moving to a virtual paradigm include a wealth of historical data and context for hardware tests, uncertainty over dependencies, and a lack of a clear path of transition to virtual methods. In this paper we will discuss approaches to understanding the value created by hardware tests and aligning that value to virtual processes. We will also discuss the need for a virtual context to be added to SAE J1739 [1] (DFMEA detection criteria), and how to create paths to maximize the value of virtual assessments. Finally, we will also discuss the cultural and organizational changes required to support.
Technical Paper

Motor Level Torque Ripple Requirement Development for Vehicle Seat Track Acceleration

2023-04-11
2023-01-0565
Torque ripple from electric motor can excite a system resonance perceived as vibration at the vehicle seat track. The CAE simulation procedure was applied to analyze the seat track acceleration excited by electric motor torque ripple. In this study, the transfer function between the electric motor torque and vehicle level seat track acceleration was developed, and it incorporates the control capability and vehicle sensitivity subfunctions. The motor level torque ripple requirement was developed, which can support motor design in early vehicle development stage based on vehicle level criteria. The analysis results obtained for motor level torque ripple requirement shows good agreement with the experimental validation using vehicle test data. The variation study on control capability and vehicle sensitivity was investigated, and the results can help to identify the solution to improve vehicle torque ripple response.
Technical Paper

Multi-Physics Based System Model for Early Stage Hybrid/Electric Vehicle HV Battery Design

2017-01-10
2017-26-0095
Vehicle electrification is driven globally due to the increased concerns on carbon emissions. But the challenges in customer acceptance remains esp. in relation to vehicle costs. Virtual simulations can help in cutting down product development cost and enable faster launch of new vehicles. An early stage system model based design iterations can help in cutting down the product development costs and building more robust products. In the current paper, we develop and analyze a battery pack system model for early phase design. We extend a previously developed system model to include critical physics like sub-component level multiphysics for electrical joint integrity. Also, we demonstrate an integration of 3D FEM & system model for improving the accuracy of joint temperature predictions during charging and/or discharging. A typical High Voltage (HV) battery system comprises of battery modules (Li-ion cells, cooling channels, structural frames, interconnect boards) and HV bus bars.
Technical Paper

Development of a Lightweight Electric Light Duty Truck Structure

2021-04-06
2021-01-0284
Finding room to package enough energy at today’s battery energy densities, while preserving performance and configuration requirements is a common problem for electric vehicles. This issue was recently addressed at General Motors by a small team utilizing agile concept development methods, constitutive material model development, and performance simulation tools to create a structural strategy for a family of unique electric light duty trucks. The desire to create a flexible architecture rather than a single vehicle, coupled with an underbody dominant, and rectilinear structural design space precluded any great topological novelty, so a basic principles approach was taken instead. A concept was devised whereby conventional truck frame rails were abandoned in favor of a series of three connected box-like structures along the length of the vehicle. For this to work effectively however, stable shear panels were required as a basic building block.
Technical Paper

Design and Implementation of a Distributed Thermal Control System for Power Electronics Components in Hybrid Vehicles

2019-04-02
2019-01-0501
Hybrid electric vehicles and battery electric vehicles (BEV) use power electronics (PE) devices to convert between high voltage DC power of the battery and other formats of power. These PE components requires operation within certain temperature range, otherwise, overheating causes component as well as vehicle performance degradation. Therefore, a thermal management system is required for PE components. This paper focuses on the design and development of such a PE components thermal control system. The proposed control system is a distributed thermal control system in which all the PE components are placed in series within one cooling loop. The advantage of the proposed control system is its reduced system complexity, energy efficiency and flexibility to add future PE components. In addition, electric control unit (ECU) are utilized so that complex control algorithms can be implemented.
Technical Paper

Fracture Limit Curve Development on ABW (Arc Brazing Weld) Considering Joint Efficiency in LS-DYNA3D

2021-04-06
2021-01-0290
Arc brazing welding (ABW) is widely used in automotive vehicle body and chassis structure along with Arc welding - MIG (Metal Inert Gas) or TIG (Tungsten Inert Gas) and spot welds. MIG welding or ABW (Arc Brazing welding) fracture in vehicle development process is one of the critical phenomena in quasi static structural simulation, like Roof Strength, Seat/Belt Anchorage and Child Restraint Anchorage (CRS). MIG/ABW Fracture has an impact on structural performance. Advantages of ABW over MIG weld is made at relatively lower temperatures. Significant advantage is welding thin sheet metal, no melting of parent metal and retains significant physical properties. This characteristic of ABW enables selection of ABW against MIG welded joint on automotive thin sheet metals. Good ABW joint can be as strong or stronger than MIG welded joint. Joint efficiency (JE) is defined as the ratio between the fracture strength of the joint and the fracture strength of parent metal.
Journal Article

Electrified Drive-Unit Parametric Mechanical-Loss Model Development and Calibration

2019-04-02
2019-01-1298
As the automotive industry vies to meet progressively more stringent global CO2 regulations in a cost-effective manner, electrified drive system cost and losses must be reduced. To this end, a parametric Drive Unit (DU) mechanical-loss model was developed to aid in the design and development of electrified propulsion systems, where the total propulsion system cost and DU losses can be directly linked (e.g., Hybrid Electric Vehicle (HEV) motor/inverter/engine content, or Battery Electric Vehicle (BEV) battery size). Many DUs for electrified propulsion systems are relatively “simple” drive systems, consisting of gears, bearings, shafts, lip seals, and an electric motor(s), but without clutches, high-pressure lube systems, or chains/belts as found in conventional automatic transmissions. The DU loss model described in this paper studies these simple DUs, with the mechanical losses dissected into 10 loss components.
X