Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Shifter Cable Vibration Transfer and Kinematic Simulation: Case Study

2005-05-16
2005-01-2379
The shifter lever is one of the main customer contact points in the vehicle. Vibration levels at this contact point have an effect on perceived vehicle quality. For this reason, shifter lever vibration and the corresponding transfer paths from the transmission to the shifter lever need to be considered during vehicle development. On a recent program, experimental measurements identified the shifter cable to be a significant transfer path for shifter lever vibration. An integrated Computer Aided Engineering (CAE) and experimental effort was undertaken to model and optimize the shifter lever and cable assembly for reduced vibration. Experimental data was used to better understand the vibration phenomenon, set boundary conditions for the CAE modeling, and for correlation. The CAE model contains the shifter lever assembly and a detailed cable assembly model.
Technical Paper

Opposed Piston Opposed Cylinder (opoc™) 5/10 kW Heavy Fuel Engine for UAVs and APUs

2006-04-03
2006-01-0278
The opposed piston opposed cylinder (opoc™) engine concept has been demonstrated as an engine concept with high specific power density and high power to volume ratio. The engine has several potential applications, including use as an auxiliary power unit (APU) in various commercial and military applications and as the primary power source for small unmanned air vehicles (UAVs). An engine in this power range operating on heavy fuels (e.g. JP5, JP8, DF2) is not typically available. The engine uses a two-cycle supercharged uniflow scavenging system with asymmetric port timing and will run at speeds between 8,000 and 12,000 rpm. The unique design of the opoc™ engine produces a piston speed that is half the speed of a typical crankshaft engine running at the same speed. Uniflow scavenging produces gas exchange efficiencies rivaling those of four-cycle engines. The design also leads to reduced in-cylinder heat losses. Furthermore, the opoc™ engine is fully balanced.
X