Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Numerical Calculation of PM Trapping and Oxidation of Diesel Particulate Filter with Catalyst by One Dimensional Model

2020-09-15
2020-01-2169
Exhaust gas from the diesel engine contains particulate matter (PM) of soot that affects human health and the environment. For the reduction of the emission of the PM, the diesel particulate filter (DPF) is placed in the exhaust system. The pressure drops increases with the PM deposit quantity in the DPF, which results in the burden of the engine. Therefore, the PM should be removed regularly by oxidation process called regeneration. Consumption of fuel is improved by optimizing the timing of regeneration. However, it is difficult to visualize the behavior of PM trapping and oxidation. We have proposed a series of models from PM deposition to the oxidation process in the DPF. In this study, the behavior of deposition and oxidation of PM in the DPF with a catalyst are calculated. The numerical calculations are performed to estimate PM deposition-oxidation process within the DPF. The results are obtained using the simplified model constructed in this study.
Journal Article

Engine Performance Characteristics for Biodiesels of Different Degrees of Saturation and Carbon Chain Lengths

2013-04-08
2013-01-1680
This experimental study examines the effect on performance and emission outputs of a compression ignition engine operating on biodiesels of varying carbon chain length and the degree of unsaturation. A well-instrumented, heavy-duty, multi-cylinder, common-rail, turbo-charged diesel engine was used to ensure that the results contribute in a realistic way to the ongoing debate about the impact of biofuels. Comparative measurements are reported for engine performance as well as the emissions of NOx, particle number and size distribution, and the concentration of the reactive oxygen species (which provide a measure of the toxicity of emitted particles). It is shown that the biodiesels used in this study produce lower mean effective pressure, somewhat proportionally with their lower calorific values; however, the molecular structure has been shown to have little impact on the performance of the engine.
Technical Paper

In Situ Observation of Catalysis Reactions Using Transmission Electron Microscope

2008-04-14
2008-01-1266
Transmission electron microscope (TEM) is a powerful tool for studying catalyst materials at nano-size and/or atomic level. Conventional TEM usually needs to be observed at room temperature in high vacuum conditions. A gaseous atmosphere and high temperature condition may change the properties of catalyst materials. Recently we developed an in situ observation system in TEM for observing the oxidation and reduction under a gas atmosphere at high temperature. Using the new in situ observation system in TEM, the morphological changes of the nano particle and support were observed in the heated gaseous atmosphere at atomic level in real time.
Technical Paper

Development of the on-board dry DeSOx filter for diesel exhaust

2009-09-13
2009-24-0154
NOx emitted from diesel is one of the main air pollutants for most countries. To reduce the emission of NOx could promote to diffuse diesel vehicles. A NOx storage/reduction (NSR) catalyst has been developed for the diesels. The catalyst for NSR is strongly poisoned by sulfur. We have found good reaction of CaCO3 with sulfur dioxide by using a thermogravimetry. We obtained desulfurization breakthrough characteristic for the sample of the CaCO3 which is washcoated on the monolith. As a result, this sample which has specific surface area, of 100 m2/g, absorbed SO2 about 0.43 ~ 0.45 g−SO2/g−CaCO3. In this experimental condition, The conversion of the sulfate does not depend on the amount of the supported CaCO3. The absorption efficiency of these samples were more than 99.4%. According to this result, it was found that the necessary amount of the absorbent was supposed to be 0.538 kg or 2.1 L for 100,000 km running.
Technical Paper

Driving Workload Comparison Between Older and Younger Drivers Using the Steering Entropy Method

2002-07-09
2002-01-2080
In this study, an attempt was made to apply the steering entropy method, proposed by Boer and Nakayama as a workload measurement technique, to a comparative evaluation of the workload of older and younger drivers. As the first step, driving simulator tests were conducted to examine a method of making comparisons between subjects whose driving performance differed. The same method was then used in making evaluations during driving tests conducted with an actual vehicle. Under the conditions used in this study, the results indicate that it should be possible to compare driving workloads among different subjects through the combined used of Hp and α. Hp is a quantified value of steering perturbation as an information entropy value that is calculated from a time history of steering angle data. It changes between 0 (no steering perturbation) and 1 (absolute randomness) in a theoretical sense.
Technical Paper

Microfluidic Simulation of Diesel Exhaust Gas and Soot Oxidation in Diesel Particulate Filter

2013-03-25
2013-01-0009
Particulate matter (PM) including soot in diesel exhaust gas is a serious atmospheric pollutant, and stricter exhaust emission standards are being set in many countries. As one of the key technologies, a diesel particulate filter (DPF) for PM trap in the after-treatment of the exhaust gas has been developed. Typically, the inlet size of filter monolith is about 2 mm, and the thickness of the filter wall is only 0.2 mm, where soot particles are removed. It is impossible to observe the small-scale phenomena inside the filter, experimentally. Then, in the present study, we conducted microfluidic simulation with soot oxidation. Here, a real cordierite filter was used in the simulation. The inner structure of the filter was scanned by a 3D X-ray CT Computed Tomography) technique. The advantage is that it is non-intrusive system, and it has a high spatial resolution in the micrometer.
Technical Paper

Numerical and Experimental Study on Improvement of Thermal Performance of Cells in Metal Substrates for Catalytic Converters

2005-04-11
2005-01-1110
In this study, with the purpose of applying to the metal catalyst substrates, we have examined the feasibility of improving the light-off performance of a catalytic converter by enhancing heat transfer in the cells with heat-transfer promoters. Experimental and CFD analyses have been conducted to estimate heat transfer rates and pressure losses of the model cells with hemispherical protrusions. The analyses show that, by enhancing heat transfer of the cells, the cell density can be reduced keeping the catalytic performance in the steady state at the same level as that of conventional ones. As a result, the thermal mass of the substrate can be also reduced effectively without an increase of the pressure loss, and consequently the light-off performance of the catalytic converter can be improved noticeably.
Technical Paper

Full-Width Test and Overload Test to Evaluate Compatibility

2005-04-11
2005-01-1373
Test procedures to assess vehicle compatibility were investigated based on a series of crash tests. Structural interaction and compartment strength are significant for compatibility, and full-width tests and overload tests have been proposed to assess these key factors. Full-width rigid and deformable barrier test results were compared with respect to force distributions, structural deformation and dummy responses. In full-width deformable tests, forces from structures can be clearly shown in barrier force distributions. The average height of force (AHOF) determined in full rigid and deformable barrier tests were similar. From car-to-car tests, it was demonstrated that stiffening the compartment of small cars is an effective and direct way to improve compatibility. To evaluate the compartment strength, five overload tests were carried out. The rebound force is proposed as a compartment strength criterion.
Technical Paper

Life Cycle Assessment of Greenhouse Gas Emissions of Electric and Internal Combustion Engine Vehicles in India

2022-03-29
2022-01-0749
Over the last decades, electric vehicles (EVs) have emerged as an alternative to internal combustion engine vehicles. EVs have different propulsion and fuel intake system when compared to internal combustion engine vehicles. Therefore, cradle-to-gate (CTG) and well-to-wheel (WTW) greenhouse gas emissions (GHGs) would be different. In this study, life cycle GHG emissions of vehicle cycle and fuel cycle are compared between EV and internal combustion engine (ICEV) powered by petrol and diesel as fuel. This study used the average curb weight of all three types of vehicles based on the availability and popularity in the Indian market (as a case study) for life cycle assessment. The Greenhouse Gases, Regulated Emissions, and Energy use in Transport (GREET) model developed by Argonne National Laboratory was adopted to conduct the life cycle assessment. The mileage of 150,000 km over the whole life period was assumed for all types of vehicles.
Technical Paper

Phenomena of PM Deposition and Oxidation in the Diesel Particulate Filter

2019-12-19
2019-01-2288
The diesel particulate filter (DPF) has attracted strong attention as a desirable after-treatment device for the particulate matter (PM) contained in exhaust gas of diesel engine. When particulate matter was deposited on a DPF, the pressure drop increases due to the PM trapping in the surface cavities of the DPF. After that, an active regeneration is required. Since more fuel is required for the regeneration in addition to the normal driving (passive regeneration), the fuel economy deteriorates. In order to improve the performance, a passive regeneration is necessary. In this study, we compared the dependence of the shape and depth of the cavity of the DPF on the PM trapping process by a comprehensive overall model and numerical calculation. We found that the pressure drop and elapsed time of the PM trapping varied, strongly depending on the cavity shape of the DPF surface. Further we examined the relative importance of the amount of PM deposit and the surface cavity shape of the DPF.
Technical Paper

Characteristics of Particle Number and Particle Mass Emissions of a Diesel Engine during Cold-, Warm-, and Hot-Start Operation

2021-06-02
2021-01-5061
Diesel engine cold start is emerging as a critical topic of investigation. Of key importance is the impact the warm-up period has on particulate emissions. Presented in this work is a fundamental and comprehensive study on the impact of cold, warm, and hot start on particulate emissions over a custom quasi-steady-state drive cycle discretized by frequent engine stop/start. The experiments were conducted on a six-cylinder, turbocharged, diesel engine. Compared with cold start, the count median diameter (CMD) increased by 16% and 5% in the Aitken mode at 1500 rpm and 2000 rpm, respectively, when the engine was fully warmed up. The geometric standard deviation (GSD) decreased as the engine warmed up. Particle number (PN) concentration decreased by 50% as the engine coolant temperature reached 70°C, compared to cold start (23°C), and a strong positive linear correlation was found between the particle mass (PM) and PN emissions at all loads.
Journal Article

Analysis of Butane Diffusion in Activated Carbon Canister

2009-04-20
2009-01-0976
A canister filled with activated carbon prevents the emission of hydrocarbon into the air, through repeated adsorption and desorption process. A small amount of hydrocarbon, with n-butane as one of the major components, remains inside the canister. The diffusion of this residual n-butane affects Diurnal Breathing Loss performance. This study reports the quantitative difference of n-butane diffusion and breakthrough under three experimental conditions. Furthermore, diffusion speed, which is an important factor in the analysis of canister performance and the design development of canister, was also calculated.
X