Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Multi-Sensor Data Fusion Techniques for RPAS Detect, Track and Avoid

2015-09-15
2015-01-2475
Accurate and robust tracking of objects is of growing interest amongst the computer vision scientific community. The ability of a multi-sensor system to detect and track objects, and accurately predict their future trajectory is critical in the context of mission- and safety-critical applications. Remotely Piloted Aircraft System (RPAS) are currently not equipped to routinely access all classes of airspace since certified Detect-and-Avoid (DAA) systems are yet to be developed. Such capabilities can be achieved by incorporating both cooperative and non-cooperative DAA functions, as well as providing enhanced communications, navigation and surveillance (CNS) services. DAA is highly dependent on the performance of CNS systems for Detection, Tacking and avoiding (DTA) tasks and maneuvers.
Technical Paper

Bistatic DIAL for Multi-Species Aviation Pollutant Measurements from RPAS

2015-09-15
2015-01-2477
This paper presents the conceptual design of a new low-cost measurement system for the determination of pollutant concentrations associated with aircraft operations. The proposed system employs Light Detection and Ranging (LIDAR) and passive electro-optics equipment installed in two non-collocated components. The source component consists of a tuneable small-size and low-cost/weight LIDAR emitter, which can be installed either on airborne or ground-based autonomous vehicles, or in fixed surface installations. The sensor component includes a target surface calibrated for reflectance and passive electro-optics equipment calibrated for radiance, both installed on an adjustable support. The proposed bistatic system determines the column-averaged molecular and aerosol pollutant concentrations along the LIDAR beam by measuring the cumulative absorption and scattering phenomena along the optical slant range.
Technical Paper

A Novel Approach to Cooperative and Non-Cooperative RPAS Detect-and-Avoid

2015-09-15
2015-01-2470
A unified approach to cooperative and non-cooperative Detect-and-Avoid (DAA) is a key enabler for Remotely Piloted Aircraft System (RPAS) to safely and routinely access all classes of airspace. In this paper state-of-the-art cooperative and non-cooperative DAA sensor/system technologies for manned aircraft and RPAS are reviewed and the associated multi-sensor data fusion techniques are discussed. A DAA system architecture is presented based on Boolean Decision Logics (BDL) for selecting non-cooperative and cooperative sensors/systems including both passive and active Forward Looking Sensors (FLS), Traffic Collision Avoidance System (TCAS) and Automatic Dependent Surveillance - Broadcast (ADS-B). After elaborating the DAA system processes, the key mathematical models associated with both non-cooperative and cooperative DAA functions are presented.
Technical Paper

Low-Cost RPAS Navigation and Guidance System using Square Root Unscented Kalman Filter

2015-09-15
2015-01-2459
Multi-Sensor Data Fusion (MSDF) techniques involving satellite and inertial-based sensors are widely adopted to improve the navigation solution of a number of mission- and safety-critical tasks. Such integrated Navigation and Guidance Systems (NGS) currently do not meet the required level of performance in all flight phases of small Remotely Piloted Aircraft Systems (RPAS). In this paper an innovative Square Root-Unscented Kalman Filter (SR-UKF) based NGS is presented and compared with a conventional UKF governed design. The presented system architectures adopt state-of-the-art information fusion approach based on a number of low-cost sensors including; Global Navigation Satellite Systems (GNSS), Micro-Electro-Mechanical System (MEMS) based Inertial Measurement Unit (IMU) and Vision Based Navigation (VBN) sensors.
Technical Paper

Experimental Investigation on a 3D Wing Section Hosting Multiple SJAs for Stall Control Purpose

2015-09-15
2015-01-2453
Flow control over aerodynamic shapes in order to achieve performance enhancements has been a lively research area for last two decades. Synthetic Jet Actuators (SJAs) are devices able to interact actively with the flow around their hosting structure by providing ejection and suction of fluid from the enclosed cavity containing a piezo-electric oscillating membrane through dedicated orifices. The research presented in this paper concerns the implementation of zero-net-mass-flux SJAs airflow control system on a NACA0015, low aspect ratio wing section prototype. Two arrays with each 10 custom-made SJAs, installed at 10% and 65% of the chord length, make up the actuation system. The sensing system consists of eleven acoustic pressure transducers distributed in the wing upper surface and on the flap, an accelerometer placed in proximity of the wing c.g. and a six-axis force balance for integral load measurement.
Technical Paper

Investigation of GNSS Integrity Augmentation Synergies with Unmanned Aircraft Sense-and-Avoid Systems

2015-09-15
2015-01-2456
Global Navigation Satellite Systems (GNSS) can support the development of low-cost and high performance navigation and guidance architectures for Unmanned Aircraft Systems (UAS) and, in conjunction with suitable data link technologies, the provision of Automated Dependent Surveillance (ADS) functionalities for cooperative Sense-and-Avoid (SAA). In non-cooperative SAA, the adoption of GNSS can also provide the key positioning and, in some cases, attitude data (using multiple antennas) required for automated collision avoidance. A key limitation of GNSS for both cooperative (ADS) and non-cooperative applications is represented by the achievable levels of integrity. Therefore, an Avionics Based Integrity Augmentation (ABIA) solution is proposed to support the development of an Integrity-Augmented SAA (IAS) architecture suitable for both cooperative and non-cooperative scenarios.
Technical Paper

Communication, Navigation and Surveillance Performance Criteria for Safety-Critical Avionic Systems

2015-09-15
2015-01-2544
Avionic system developers are currently working on innovative technologies that are required in view of the rapid expansion of global air transport and growing concerns for environmental sustainability of aviation sector. Novel Communication, Navigation and Surveillance (CNS) system designs are being developed in the CNS/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) context for mission-and safety-critical applications. The introduction of dedicated software modules in Next Generation Flight Management Systems (NG-FMS), which are the primary providers of automated navigation and guidance services in manned aircraft and Remotely-Piloted Aircraft Systems (RPAS), has the potential to enable the significant advances brought in by time and trajectory based operations. High-integrity, high-reliability and all-weather services are required in the context of four dimensional Trajectory Based Operations / Intent Based Operations (TBO/IBO).
Technical Paper

Automated ATM System Enabling 4DT-Based Operations

2015-09-15
2015-01-2539
As part of the current initiatives aimed at enhancing safety, efficiency and environmental sustainability of aviation, a significant improvement in the efficiency of aircraft operations is currently pursued. Innovative Communication, Navigation, Surveillance and Air Traffic Management (CNS/ATM) technologies and operational concepts are being developed to achieve the ambitious goals for efficiency and environmental sustainability set by national and international aviation organizations. These technological and operational innovations will be ultimately enabled by the introduction of novel CNS/ATM and Avionics (CNS+A) systems, featuring higher levels of automation. A core feature of such systems consists in the real-time multi-objective optimization of flight trajectories, incorporating all the operational, economic and environmental aspects of the aircraft mission.
Technical Paper

Image Processing Based Air Vehicles Classification for UAV Sense and Avoid Systems

2015-09-15
2015-01-2471
The maturity reached in the development of Unmanned Air Vehicles (UAVs) systems is making them more and more attractive for a vast number of civil missions. Clearly, the introduction of UAVs in the civil airspace requiring practical and effective regulation is one of the most critical issues being currently discussed. As several civil air authorities report in their regulations “Sense and Avoid” or “Detect and Avoid” capabilities are critical to the successful integration of UAV into the civil airspace. One possible approach to achieve this capability, specifically for operations beyond the Line-of-Sight, would be to equip air vehicles with a vision-based system using cameras to monitor the surrounding air space and to classify other air vehicles flying in close proximity. This paper presents an image-based application for the supervised classification of air vehicles.
Technical Paper

Nonlinear Slender Beam-Wise Schemes for Structural Behavior of Flexible UAS Wings

2015-09-15
2015-01-2462
The innovative highly flexible wings made of extremely light structures, yet still capable of carrying a considerable amount of non- structural weights, requires significant effort in structural simulations. The complexity involved in such design demands for simplified mathematical tools based on appropriate nonlinear structural schemes combined with reduced order models capable of predicting accurately their aero-structural behaviour. The model presented in this paper is based on a consistent nonlinear beam-wise scheme, capable of simulating the unconventional aeroelastic behaviour of flexible composite wings. The partial differential equations describing the wing dynamics are expanded up to the third order and can be used to explore the effect of static deflection imposed by external trim, the effect of gust loads and the one of nonlinear aerodynamic stall.
X