Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2008/2009

2009-07-12
2009-01-2445
The design and evaluation of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from a spacecraft atmosphere is presented. The approach for Orion and Altair is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of an Orion Crew Exploration Vehicle Sorbent Based Atmosphere Revitalization system, including test articles, a facility test stand, and full-scale testing in late 2008 and early 2009 is discussed.
Journal Article

A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

2009-07-12
2009-01-2591
After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Some lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot predict all possible events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew.
Journal Article

Design Description and Initial Characterization Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

2009-07-12
2009-01-2419
NASA's proposed lunar lander, Altair, will be exposed to vastly different external temperatures following launch till its final destination on the moon. In addition, the heat rejection is lowest at the lowest environmental temperatures (0.5 kW @ 4K) and highest at the highest environmental temperature (4.5 kW @ 215K). This places a severe demand on the radiator design to handle these extreme turn-down requirements. A radiator with digital turn-down capability is currently under study at JPL as a robust means to meet the heat rejection demands and provide freeze protection while minimizing mass and power consumption. Turndown is achieved by independent control of flow branches with isolating latch valves and a gear pump to evacuate the isolated branches. A bench-top test was conducted to characterize the digital radiator concept. Testing focused on the demonstration of proper valve sequencing to achieve turn-down and recharge of flow legs.
Journal Article

A Freezable Heat Exchanger for Space Suit Radiator Systems

2008-06-29
2008-01-2111
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment, the load from the electrical components and incident radiation. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus simple and highly reliable. However, past freezable radiators have been too heavy.
Technical Paper

Neutral Buoyancy Portable Life Support System Performance Study

1991-07-01
911346
A system performance study on a portable life support system being developed for use in the Weightless Environment Training Facility (WETF) and the Neutral Buoyancy Laboratory (NBL) has been completed. The Neutral Buoyancy Portable Life Support System (NBPLSS) will provide life support to suited astronauts training for extravehicular activity (EVA) under water without the use of umbilicals. The basic configuration is characterized by the use of medium pressure (200 - 300 psi) cryogen (liquid nitrogen/oxygen mixture) which provides cooling within the Extravehicular Mobility Unit (EMU), the momentum which enables flow in the vent loop, and oxygen for breathing. NBPLSS performance was analyzed by using a modified Metabolic Man program to compare competing configurations. Maximum sustainable steady state metabolic rates and transient performance based on a typical WETF metabolic rate profile were determined and compared.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

2007-07-09
2007-01-3041
In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.
Technical Paper

Access Systems for Partial Gravity Exploration & Rescue: Results from Prototype Testing in an Analog Environment

2007-07-09
2007-01-3033
An EVA simulation with a medical contingency scenario was conducted in 2006 with the NASA Haughton-Mars and EVA Physiology System and Performance Projects, to develop medical contingency management and evacuation techniques for planetary surface exploration. A rescue/evacuation system to allow two rescuer astronauts to evacuate one incapacitated astronaut was evaluated. The rescue system was utilized effectively to extract an injured astronaut up a slope of15-25° and into a surface mobility rover for transport to a simulated habitat for advanced medical care. Further research is recommended to evaluate the effects of reduced gravity and to develop synergies with other surface systems for carrying out the contingency procedures.
Technical Paper

Space Suit Radiator Performance in Lunar and Mars Environments

2007-07-09
2007-01-3275
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Last year we reported on the design and initial operational assessment tests of a novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X).
Technical Paper

Continuously Regenerable Freeze-Out CO2 Control Technology

2007-07-09
2007-01-3270
Carbon dioxide (CO2) removal technology development for portable life support systems (PLSS) has traditionally concentrated in the areas of solid and liquid chemical sorbents and semi-permeable membranes. Most of these systems are too heavy in gravity environments, require prohibitive amounts of consumables for operation on long term planetary missions, or are inoperable on the surface of Mars due to the presence of a CO2 atmosphere. This paper describes the effort performed to mature an innovative CO2 removal technology that meets NASA's planetary mission needs while adhering to the important guiding principles of simplicity, reliability, and operability. A breadboard cryogenic carbon dioxide scrubber for an ejector-based cryogenic PLSS was developed, designed, and tested. The scrubber freezes CO2 and other trace contaminants out of expired ventilation loop gas using cooling available from a liquid oxygen (LOX) based PLSS.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle 2006/2007

2007-07-09
2007-01-3254
The design of a vacuum-swing adsorption process to remove metabolic water, metabolic carbon dioxide, and metabolic and equipment generated trace contaminant gases from the Orion Crew Exploration Vehicle (CEV) atmosphere is presented. For Orion, the approach is taken that all metabolic water must be removed by the Sorbent-Based Atmosphere Revitalization System (SBAR), a technology approach that has not been used in previous spacecraft life support systems. Design and development of a prototype SBAR, a facility test stand, and subsequent testing of the SBAR in late 2006 and early 2007 is discussed.
Technical Paper

A New Method for Breath Capture Inside a Space Suit Helmet

2007-07-09
2007-01-3248
This project investigates methods to capture an astronaut's exhaled carbon dioxide (CO2) before it becomes diluted with the high volumetric oxygen flow present within a space suit. Typical expired breath contains CO2 partial pressures (pCO2) in the range of 20-35 mm Hg (.0226-.046 atm). This research investigates methods to capture the concentrated CO2 gas stream prior to its dilution with the low pCO2 ventilation flow. Specifically this research is looking at potential designs for a collection cup for use inside the space suit helmet. The collection cup concept is not the same as a breathing mask typical of that worn by firefighters and pilots. It is well known that most members of the astronaut corps view a mask as a serious deficiency in any space suit helmet design. Instead, the collection cup is a non-contact device that will be designed using a detailed Computational Fluid Dynamic (CFD) analysis of the ventilation flow environment within the helmet.
Technical Paper

Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for Advanced Spacesuit Systems

2007-07-09
2007-01-3208
An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines.
Technical Paper

The Walkback Test: A Study to Evaluate Suit and Life Support System Performance Requirements for a 10 Kilometer Lunar Traverse in a Planetary Suit

2007-07-09
2007-01-3133
As planetary suit and planetary life support systems develop, specific design inputs for each system relate to a presently unanswered question concerning operational concepts: What distance can be considered a safe walking distance for a suited crew member exploring the surface of the Moon to ‘walkback’ to the habitat in the event of a rover breakdown, taking into consideration the planned extravehicular activity (EVA) tasks as well as the possible traverse back to the habitat? It has been assumed, based on Apollo program experience, that 10 kilometers (6.2 mi) will be the maximum EVA excursion distance from the lander or habitat to ensure the crew member's safe return to the habitat in the event of a rover failure. To investigate the feasibility of performing a suited 10 km walkback, NASA-JSC assembled a multi-disciplinary team to design and implement the ‘Lunar Walkback Test’.
Technical Paper

Operational Psychological Issues for Mars and other Exploration Missions

1997-07-01
972290
Long duration NASA-Mir program missions, and the planned International Space Station missions, have given impetus for NASA to implement an operational program of psychological preparation, monitoring, and support for its crews. For exploration missions measured in years, the importance of psychological issues increases exponentially beyond what is currently done. Psychologists' role should begin during the vehicle design and crew selection phases. Extensive preflight preparation must focus on individual and team adaptation, and leadership. Factors such as lack of resupply options and communication delays will alter in-flight monitoring and support capabilities, and require a more self-sufficient crew. Involvement in postflight recovery will also be necessry to ensure appropriate reintegration to the family and job.
Technical Paper

Summary of Current and Future MSFC International Space Station Environmental Control and Life Support System Activities

1997-07-01
972331
The paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station(ISS).Current activities computer model development, component design and development, subsystem/integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.
Technical Paper

Demonstration of Oxygen Production on the Moon and Mars

1997-07-01
972498
Scientists and engineers at NASA are currently developing flight instruments which will demonstrate oxygen production on the Moon and Mars. REGA will extract oxygen from the lunar regolith, measure implanted solar wind and indigenous gases, and monitor the lunar atmosphere. MIP will demonstrate oxygen production on Mars, along with key supporting technologies including filtration, atmospheric acquisition and compression, thermal management, solar cell performance, and dust removal.
Technical Paper

Performance of the Water Recovery System During Phase II of the Lunar-Mars Life Support Test Project

1997-07-01
972417
The recovery of potable water from waste water produced by humans in regenerative life support systems is essential for success of long-duration space missions. The Lunar-Mars Life Support Test Project (LMLSTP) Phase II test was performed to validate candidate technologies to support these missions. The test was conducted in the Crew and Thermal Systems Division (CTSD) Life Support Systems Integration Facility (LSSIF) at Johnson Space Center (JSC). Discussed in this paper are the water recovery system (WRS) results of this test. A crew of 4-persons participated in the test and lived in the LSSIF chamber for a duration of 30-days from June 12 to July 12, 1996. The crew had accommodations for personal hygiene, the air was regenerated for reuse, and the waste water was processed to potable and hygiene quality for reuse by the crew during this period. The waste water consisted of shower, laundry, handwash, urine and humidity condensate.
Technical Paper

Bioregenerative Planetary Life Support Systems Test Complex: Facility Description and Testing Objectives

1997-07-01
972342
As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support facility capable of supporting long-duration testing of integrated bioregenerative life support systems with human test crews. This facility, the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex), is currently under development at the Johnson Space Center. The BIO-Plex is comprised of a set of interconnected test chambers with a sealed internal environment capable of supporting test crews of four individuals for periods exceeding one year. The life support systems to be tested will consist of both biological and physicochemical technologies and will perform all required air revitalization, water recovery, biomass production, food processing, solid waste processing, thermal management, and integrated command and control functions.
Technical Paper

Phase III Integrated Water Recovery Testing at MSFC: International Space Station Recipient Mode Test Results and Lessons Learned

1997-07-01
972375
A test has been completed at NASA's Marshall Space Flight Center (MSFC) to evaluate the Water Recovery and Management (WRM) system and Waste Management (WM) urinal design for the United States On-Orbit Segment (USOS) of the International Space Station (ISS). Potable and urine reclamation processors were integrated with waste water generation equipment and successfully operated for a total of 128 days in recipient mode configuration to evaluate the accumulation of contaminants in the water system and to assess the performance of various modifications to the WRM and WM hardware. No accumulation of contaminants were detected in the product water over the course of the recipient mode test. An additional 18 days were conducted in donor mode to assess the ability of the system to removal viral contaminants, to monitor the breakthrough of organic contaminants through the multifiltration bed, and for resolving anomalies that occurred during the test.
X