Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Applying Detailed Kinetics to Realistic Engine Simulation: the Surrogate Blend Optimizer and Mechanism Reduction Strategies

2010-04-12
2010-01-0541
Designing advanced, clean and fuel-efficient engines requires detailed understanding of fuel chemistry. While knowledge of fuel combustion chemistry has grown rapidly in recent years, the representation of conventional fossil fuels in full detail is still intractable. A popular approach is to use a model-fuel or surrogate blend that can mimic various characteristics of a conventional fuel. Despite the use of surrogate blends, there remains a gap between detailed chemistry and its utilization in computational fluid dynamics (CFD), due to the prohibitive computational cost of using thousands of chemical species in large numbers of computational cells. This work presents a set of software tools that help to enable the use of detailed chemistry in representing conventional fuels in CFD simulation. The software tools include the Surrogate Blend Optimizer and a suite of automated mechanism reduction strategies.
Technical Paper

Combustion and Emissions Modeling of a Gasoline HCCI Engine Using Model Fuels

2009-04-20
2009-01-0669
To address the growing need for accurate predictions of combustion phasing and emissions for development of advanced engines, a more accurate definition of model fuels and their associated chemical-kinetics mechanisms are necessary. Wide variations in street fuels require a model-fuel blending methodology to allow simulation of fuel-specific characteristics, such as ignition timing, emissions, and fuel vaporization. We present a surrogate-blending technique that serves as a practical modeling tool for determination of surrogate blends specifically tailored to different real-fuel characteristics, with particular focus on model fuels for gasoline engine simulation. We start from a palette of potential model-fuel components that are based on the characteristic chemical classes present in real fuels. From this palette, components are combined into a surrogate-fuel blend to represent a real fuel with specific fuel properties.
Technical Paper

Validation Studies of a Detailed Kinetics Mechanism for Diesel and Gasoline Surrogate Fuels

2010-04-12
2010-01-0545
Surrogate fuels used in simulations need to capture the physical, combustion and emission characteristics of the real diesel and gasoline fuels they represent. This requirement can result in complex surrogate fuels that are blends of components representing several chemical classes, such as normal-, cyclo- and iso-alkanes, alkenes and aromatics. With a palette of around 20 potential surrogate-fuel components we can identify a blend to represent the most important physical and chemical properties of a particular real fuel. However, a detailed chemical kinetics mechanism is required to use such a surrogate in a model of the in-cylinder combustion processes. The detailed mechanism must capture the relevant kinetic pathways for all of the surrogate-fuel components. To this end, we have assembled a large comprehensive kinetic mechanism that includes several thousands of species to represent the combustion behavior of a wide range of surrogate fuels for gasoline and diesel.
X