Refine Your Search

Topic

Affiliation

Search Results

Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Journal Article

Establishing New Correlations Between In-Cylinder Charge Motion and Combustion Process in Gasoline Engines Through a Numerical DOE

2010-04-12
2010-01-0349
This paper presents an innovative methodology and the corresponding results of a study whose goal is to identify the main links between in-cylinder charge motion and the development of combustion without taking into consideration how to create this charge motion (shape of the intake ducts, valve timing, etc …). During this study a specific methodology was developed and used. It is based on the calculation of a “3D numerical test bench” matrix planned following the Design Of Experiments method. Many aerodynamic configurations obtained by combining the three main aerodynamic motions with several different intensities (tumble, cross-tumble or swirl) at the intake valve closing were calculated.
Journal Article

Towards an Innovative Combination of Natural Gas and Liquid Fuel Injection in Spark Ignition Engines

2010-05-05
2010-01-1513
In order to address the CO₂ emissions issue and to diversify the energy for transportation, CNG (Compressed Natural Gas) is considered as one of the most promising alternative fuels given its high octane number. However, gaseous injection decreases volumetric efficiency, impacting directly the maximal torque through a reduction of the cylinder fill-up. To overcome this drawback, both independent natural gas and gasoline indirect injection systems with dedicated engine control were fitted on a RENAULT 2.0L turbocharged SI (Spark Ignition) engine and were adapted for simultaneous operation. The main objective of this innovative combination of gas and liquid fuel injections is to increase the volumetric efficiency without losing the high knocking resistance of methane.
Journal Article

Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car

2013-04-08
2013-01-1719
The target of substantial CO₂ reductions in the spirit of the Kyoto Protocol as well as higher engine efficiency requirements has increased research efforts into hybridization of passenger cars. In the frame of this hybridization, there is a real need to develop small Internal Combustion Engines (ICE) with high power density. The two-stroke cycle can be a solution to reach these goals, allowing reductions of engine displacement, size and weight while maintaining good NVH, power and consumption levels. Reducing the number of cylinders, could also help reduce engine cost. Taking advantage of a strong interaction between the design office, 0D system simulations and 3D CFD computations, a specific methodology was set up in order to define a first optimized version of a two-stroke uniflow diesel engine. The main geometrical specifications (displacement, architecture) were chosen at the beginning of the study based on a bibliographic pre-study and the power target in terms.
Journal Article

Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine

2015-04-14
2015-01-0830
Partially Premixed Combustion (PPC) of fuels in the gasoline octane range has proven its potential to achieve simultaneous reduction in soot and NOX emissions, combined with high indicated efficiencies; while still retaining proper control over combustion phasing with the injection event, contrary to fully premixed strategies. However, gasoline fuels with high octane number as the commonly available for the public provide a challenge to ensure reliable ignition especially in the low load range, while fuel blends with lower octane numbers present problems for extending the ignition delay in the high load range and avoid the onset of knocking-like combustion. Thus, choosing an appropriate fuel and injection strategy is critical to solve these issues, assuring successful PPC operation in the full engine map.
Journal Article

Analysis of Diesel Engine In-Cylinder Air-Fuel Mixing with Homogeneity Factor: Combined Effects of Pilot Injection Strategies and Air Motion

2014-10-01
2014-01-9052
With a view to understanding the air-fuel mixing behavior and the effects of the mixture quality on the emissions formation and engine performance, a new quantitative factor of the in-cylinder air-fuel homogeneity named Homogeneity Factor (HF) has been developed. Its characteristics under various injection conditions and air swirl motions within the cylinder have been investigated with CFD simulation. The results have shown that air-fuel homogeneity is essentially affected by the spatial and temporal fuel distribution within the combustion chamber. Higher injection pressure, longer dwell time and increased pilot fuel quantities can contribute to better mixing quality resulting in increased HF and optimum engine performance with low fuel consumption and soot emissions. With regard to the in-cylinder air motion, increasing swirl ratio enhances the air-fuel mixing quality which has been reflected in the variation of the HF.
Technical Paper

The Effect of Temperature on the Molecular Compositions of External and Internal Gasoline Direct Injection Deposits

2021-09-21
2021-01-1188
The increased severity and prevalence of insoluble deposits formed on fuel injectors in gasoline direct injection (GDI) engines precipitates negative environmental, economic and healthcare impacts. A necessary step in mitigating deposits is to unravel the molecular compositions of these complex layered materials. But very little molecular data has been acquired. Mass spectrometry shows promise but most techniques require the use of solvents, making them unsuited for analyzing insoluble deposits. Here, we apply the high mass-resolving power and in-situ analysis capabilities of 3D OrbitrapTM secondary ion mass spectrometry (3D OrbiSIMS) to characterize deposits formed on the external tip and internal needle from a GDI injector. This is the first application of the technique to study internal GDI deposits. Polycyclic aromatic hydrocarbons (PAHs) are present up to higher maximum masses in the external deposit.
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Investigations of Diesel Injector Deposits Characterization and Testing

2020-09-15
2020-01-2094
Over the last decade, there has been an impetus in the automobile industry to develop new diesel injector systems, driven by a desire to reduce fuel consumption and proscribed by the requirement to fulfil legislation emissions. The modern common-rail diesel injector system has been developed by the industry to fulfil these aspirations, designed with ever-higher tolerances and pressures, which have led to concomitant increases in fuel temperatures after compression with reports of fuel temperatures of ~150°C at 1500-2500 bar. This engineering solution in combination with the introduction of Ultra Low Sulphur diesel fuel (ULSD) has been found to be highly sensitive to deposit formation both external injector deposits (EDID) and internal (IDID). The deposits have caused concerns for customers with poor spray patterns misfiring injector malfunction and failure, producing increased fuel consumption and emissions.
Journal Article

Development and Validation of a New Zero-Dimensional Semi-Physical NOx Emission Model for a D.I. Diesel Engine Using Simulated Combustion Process

2015-04-14
2015-01-1746
Reducing NOx tailpipe emissions is one of the major challenges when developing automotive Diesel engines which must simultaneously face stricter emission norms and reduce their fuel consumption/CO2 emission. In fact, the engine control system has to manage at the same time the multiple advanced combustion technologies such as high EGR rates, new injection strategies, complex after-treatment devices and sophisticated turbocharging systems implemented in recent diesel engines. In order to limit both the cost and duration of engine control system development, a virtual engine simulator has been developed in the last few years. The platform of this simulator is based on a 0D/1D approach, chosen for its low computational time. The existing simulation tools lead to satisfactory results concerning the combustion phase as well as the air supply system. In this context, the current paper describes the development of a new NOx emission model which is coupled with the combustion model.
Journal Article

The Effects of Cylinder Deactivation on the Thermal Behaviour and Performance of a Three Cylinder Spark Ignition Engine

2016-10-17
2016-01-2160
A physics based, lumped thermal capacity model of a 1litre, 3 cylinder, turbocharged, directly injected spark ignition engine has been developed to investigate the effects of cylinder deactivation on the thermal behaviour and fuel economy of small capacity, 3 cylinder engines. When one is deactivated, the output of the two firing cylinders is increased by 50%. The largest temperature differences resulting from this are between exhaust ports and between the upper parts of liners of the deactivated cylinder and the adjacent firing cylinder. These differences increase with load. The deactivated cylinder liner cools to near-coolant temperature. Temperatures in the lower engine structure show little response to deactivation. Temperature response times following deactivation or reactivation events are similar. Motoring work for the deactivated cylinder is a minor loss; the net benefit of deactivation diminishes with increasing load.
Technical Paper

Brake Power Availability Led Optimisation of P0 versus P2 48V Hybrid Powertrain Architectures

2020-04-14
2020-01-0439
Through improving the 48V hybrid vehicle archetype, governmental emission targets could be more easily met without incurring the high costs associated with increasing levels of electrification. The braking energy recovery function of hybrid vehicles is recognised as an effective solution to reduce emissions and fuel consumption in the short to medium term. The aim of this study was to evaluate methods to maximise the braking energy recovery capability of the 48V hybrid electric vehicle over pre-selected drive cycles using appropriately sized electrified components. The strategy adopted was based upon optimising the battery chemistry type via specific power capability, so that overall brake power is equal to the maximum battery charging power in a typical medium-sized passenger car under typical driving. This will maximise the regenerative braking energy whilst providing a larger torque assistance for a lower battery capacity.
Technical Paper

Optimal Control of Mass Transport Time-Delay Model in an EGR

2020-04-14
2020-01-0251
This paper touches on the mass transport phenomenon in the exhaust gas recirculation (EGR) of a gasoline engine air path. It presents the control-oriented model and control design of the burned gas ratio (BGR) transport phenomenon, witnessed in the intake path of an internal combustion engine (ICE), due to the redirection of burned gases to the intake path by the low-pressure EGR (LP-EGR). Based on a nonlinear AMESim® model of the engine, the BGR in the intake manifold is modeled as a state-space (SS) output time-delay model, or alternatively as an ODE-PDE coupled system, that take into account the time delay between the moment at which the combusted gases leave the exhaust manifold and that at which they are readmitted in the intake manifold. In addition to their mass transport delay, the BGRs in the intake path are also subject to state and input inequality constraints.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Technical Paper

Effect of a Split-Injection Strategy on the Atomisation Rate Using a High Pressure Gasoline DI Injector

2020-04-14
2020-01-0322
The Gasoline direct-injection (GDI) engine can emit high levels of particulate matter and unburned Hydrocarbons when operating under stratified charge combustion mode. Injecting late in the compression stroke means the fuel has insufficient time to atomise and evaporate. This could cause fuel film accumulation on the piston surface and combustion liner. Locally fuel rich diffusion combustion could also result in the formation of soot particles. Employing a split-injection strategy can help tackle these issues. The first injection is initiated early in the intake stroke and could ensure a global homogeneous charge. The second injection during the compression stroke could help form a fuel-rich charge in the vicinity of the spark plug. Many studies have established the crucial role that a split-injection strategy plays in the stratified charge operation of GDI engines.
Journal Article

Computational Fluid Dynamics Calculations of Turbocharger's Bearing Losses

2010-05-05
2010-01-1537
Fuel consumption in internal combustion engines and their associated CO2 emissions have become one of the major issues facing car manufacturers everyday for various reasons: the Kyoto protocol, the upcoming European regulation concerning CO2 emissions requiring emissions of less than 130g CO2/km before 2012, and customer demand. One of the most efficient solutions to reduce fuel consumption is to downsize the engine and increase its specific power and torque by using turbochargers. The engine and the turbocharger have to be chosen carefully and be finely tuned. It is essential to understand and characterise the turbocharger's behaviour precisely and on its whole operating range, especially at low engine speeds. The characteristics at low speed are not provided by manufacturers of turbochargers because compressor maps cannot be achieve on usual test bench.
Journal Article

Investigations of Piston Ring Pack and Skirt Contributions to Motored Engine Friction

2008-04-14
2008-01-1046
An experimental study has been carried out to examine the influence of ring tan load and piston skirt modifications on piston assembly friction under motored engine conditions for initial temperatures of -20, 0 and 30°C and motoring speeds within the range 400 to 2000 rev/min. The study has been carried out using the block, crankshaft and pistons of a 2.4I, 4 cylinder diesel engine with a bore and stroke of 89.9mm and 94.6mm respectively. The pistons examined are typical of current designs for light duty diesels. A range of ring pack and piston skirt modifications have been tested, in each case as part of a complete piston assembly. The first changes produced reductions in fmep of between 5% and 38%. The reduction was due to improved skirt and ring pack designs in equal measure, each giving improvements of up to 20%. From this baseline eliminating the tan load of the piston rings was projected to give a further reduction in fmep of between 10% and 20%.
Journal Article

The Effect of Reducing Compression Ratio on the Work Output and Heat Release Characteristics of a DI Diesel under Cold Start Conditions

2008-04-14
2008-01-1306
An experimental investigation has been carried out to compare the indicated performance and heat release characteristics of a DI diesel engine at compression ratios of 18.4:1 and 15.4:1. The compression ratio was changed by modifying the piston bowl volume; the bore and stroke were unchanged, and the swept volume was nominally 500cc. The engine is a single cylinder variant of modern design which meets Euro 4 emissions requirements. Work output and heat release characteristics for the two compression ratios have been compared at an engine speed of 300 rev/min and test temperatures of 10, -10 and -20°C. A more limited comparison has also been made for higher speeds representative of cold idle at one test temperature (-20°C). The reduction in compression ratio generally produces an increase in peak specific indicated work output at low speeds; this is attributable to a reduction in blowby and heat transfer losses and lower peak rates of heat release increasing cumulative burn.
X