Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Influence of the Mixture Formation on the Lubrication Oil Emission of Combustion Engines

2010-04-12
2010-01-1275
Partly competing objectives, as low fuel consumption, low friction, long oil maintenance rate, and at the same time lowest exhaust emissions have to be fulfilled. Diminishing resources, continuously reduced development periods, and shortened product cycles yield detailed knowledge about oil consumption mechanisms in combustion engines to be essential. There are different ways for the lubricating oil to enter the combustion chamber: for example as blow-by gas, leakage past valve stem seals, piston rings (reverse blow-by) and evaporation from the cylinder liner wall and the combustion chamber. For a further reduction of oil consumption the investigation of these mechanisms has become more and more important. In this paper the influence of the mixture formation and the resulting fuel content in the cylinder liner wall film on the lubricant oil emission was examined.
Journal Article

Operation Strategies for Controlled Auto Ignition Gasoline Engines

2009-04-20
2009-01-0300
Controlled Auto Ignition combustion systems have a high potential for fuel consumption and emissions reduction for gasoline engines in part load operation. Controlled auto ignition is initiated by reaching thermal ignition conditions at the end of compression. Combustion of the CAI process is controlled essentially by chemical kinetics, and thus differs significantly from conventional premixed combustion. Consequently, the CAI combustion process is determined by the thermodynamic state, and can be controlled by a high amount of residual gas and stratification of air, residual gas and fuel. In this paper both fundamental and application relevant aspects are investigated in a combined approach. Fundamental knowledge about the auto-ignition process and its dependency on engine operating conditions are required to efficiently develop an application strategy for CAI combustion.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

Type Analysis of EGR-Strategies for Controlled Auto Ignition (CAI) by Using Numerical Simulations and Optical Measurements

2006-04-03
2006-01-0630
The main assignment of Controlled Auto Ignition (CAI) operation range expansion is to reduce the burn rate or combustion noise at high load and to minimize misfire at low load. The potential of two principal EGR strategies is well known to initiate CAI in a wide range of operation map by using a variable train system: the Exhaust Port Recirculation (EPR) for higher part load and the Combustion Chamber Recirculation (CCR - also called Negative Valve Overlap) for lower part load. However the detailed comparison of the ignition phenomena with each EGR strategy has not been fully studied yet. In this paper, EPR and CCR were compared with same operational condition (engine speed and load). For the analysis, flame luminescence and Raman scattering method for optical measurement and STAR-CD (CD-adapco) for numerical simulation are used.
Technical Paper

Controlled Auto Ignition Combustion Process with an Electromechanical Valve Train

2003-03-03
2003-01-0032
The current discussion about possible limitation of CO2 emissions makes improvement of fuel consumption a central topic for gasoline engine development. Various technological solutions are available to realize this improvement. Concepts featuring direct fuel injection, engine downsizing and unthrottled control of engine load with variable valvetrains are currently considered the most promising ways to achieve this goal. Further concepts that are under development include Controlled Auto Ignition (CAI) and homogenous lean burn combustion as well as certain combinations of these technologies. Within the European market, direct injection is currently the most popular solution. The drawback is that a very expensive exhaust gas aftertreatment system is necessary to keep exhaust emissions within legal limits.
Technical Paper

Thermodynamical and Mechanical Approach Towards a Variable Valve Train for the Controlled Auto Ignition Combustion Process

2005-04-11
2005-01-0762
Controlled Auto Ignition (CAI) as a promising future combustion process is a concept to strongly reduce fuel consumption as well as NOx emissions. The acceptance and the potential of this combustion process depends on the possible CAI operation range in the engine map and the fuel consumption benefit, as well as the complexity of the variable valve train which is necessary to realize the CAI combustion process. The thermodynamic investigations presented in this paper were done on an engine equipped with an electromechanical valve train (EMVT), featuring Port Fuel Injection (PFI) and direct Injection. They show that the electromechanical valve train is an excellent platform for developing the CAI process. Controlled Auto Ignition has been realized with port fuel injection in a speed range between 1000 and 4500 rpm and in a load range between approximately 1 and 6 bar BMEP (about 5 bar BMEP for pressure gradients lower than 3 bar/°CA) depending on engine speed.
X