Refine Your Search

Topic

Author

Search Results

Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
Technical Paper

Validation of Vehicle NVH Performance using Experimental Modal Testing and In-Vehicle Dynamic Measurements

2007-05-15
2007-01-2320
NVH targets for future vehicles are often defined by utilizing a competitive benchmarking vehicle in conjunction with an existing production and/or reference vehicle. Mode management of full vehicle modes is one of the most effective and significant NVH strategies to achieve such targets. NVH dynamic characteristics of a full vehicle can be assessed and quantified through experimental modal testing for determination of global body mode resonance frequency, damping property, and mode shape. Major body modes identified from full vehicle modal testing are primarily dominated by the vehicle's body-in-white structure. Therefore, an estimate of BIW modes from full vehicle modes becomes essential, when only full vehicle modes from experimental modal testing exist. Establishing BIW targets for future vehicles confines the fundamental NVH behavior of the full vehicle.
Technical Paper

NVH Refinement of Diesel Powered Sedans with Special Emphasis on Diesel Clatter Noise and Powertrain Harshness

2007-05-15
2007-01-2378
NVH refinement of passenger vehicles is crucial to customer acceptance of contemporary vehicles. This paper describes the vehicle NVH development process, with specific examples from a Diesel sedan application that was derived from gasoline engine-based vehicle architecture. Using an early prototype Diesel vehicle as a starting point, this paper examines the application of a Vehicle Interior Noise Simulation (VINS) technique in the development process. Accordingly, structureborne and airborne noise shares are analyzed in the time-domain under both steady-state and transient test conditions. The results are used to drive countermeasure development to address structureborne and airborne noise refinement. Examples are provided to highlight the refinement process for “Diesel knocking” under idle as well as transient test conditions. Specifically, the application of VINS to understanding the influence of high frequency dynamic stiffness of hydro-mounts on Diesel clatter noise is examined.
Technical Paper

A New Method for Obtaining FRF of a Structure in Area Where Impact Hammer Cannot Reach

2007-05-15
2007-01-2385
The Frequency Response Function (FRF) is a fundamental component to identifying the dynamic characteristics of a system. FRF's have a significant impact on modal analysis and root cause analysis of NVH issues. In most cases the FRF can be easily measured, but there are instances when the measurement is unobtainable due to spatial constraints. This paper outlines a simple experimental method for obtaining a high quality input-output FRF of a structure in areas where an impact hammer can not reach during impact testing. Traditionally, the FRF in such an area is obtained by using a load cell extender with a hammer impact excitation. A common problem with this device is a double hit, that yields unacceptable results.
Technical Paper

Laminar Flow Whistle on a Vehicle Side Mirror

2007-04-16
2007-01-1549
In the development of several outside mirror designs for vehicles, a high frequency noise (whistling) phenomenon was experienced. First impression was that this might be due to another source on the vehicle (such as water management channels) or a cavity noise; however, upon further investigation the source was found to be the mirror housing. This “laminar whistle” is related to the separation of a laminar boundary layer near the trailing edges of the mirror housing. When there is a free stream impingement on the mirror housing, the boundary layer starts out as laminar, but as the boundary layer travels from the impingement point, distance, speed, and roughness combine to trigger the transition turbulent. However, when the transition is not complete, pressure fluctuations can cause rapidly changing flow patterns that sound like a whistle to the observer. Because the laminar boundary layer has very little energy, it does not allow the flow to stay attached on curved surfaces.
Technical Paper

Side Window Buffeting Characteristics of an SUV

2004-03-08
2004-01-0230
Buffeting is a wind noise of high intensity and low frequency in a moving vehicle when a window or sunroof is open and this noise makes people in the passenger compartment very uncomfortable. In this paper, side window buffeting was simulated for a typical SUV using the commercial CFD software Fluent 6.0. Buffeting frequency and intensity were predicted in the simulations and compared with the corresponding experimental wind tunnel measurement. Furthermore, the effects of several parameters on buffeting frequency and intensity were also studied. These parameters include vehicle speed, yaw angle, sensor location and volume of the passenger compartment. Various configurations of side window opening were considered. The effects of mesh size and air compressibility on buffeting were also evaluated. The simulation results for some baseline configurations match the corresponding experimental data fairly well.
Technical Paper

Chassis Dynamometer Simulation of Tire Impact Response

2001-04-30
2001-01-1481
One of the major NVH concerns for automobile manufacturers is the response of a vehicle to the impact of the tire as it encounters a road discontinuity or bump. This paper describes methods for analyzing the impact response of a vehicle to such events. The test vehicle is driven on a dynamometer, on which a bump simulating cleat is mounted. The time histories of the cleat impact response of the vehicle can be classified as a transient and a repeated signal, which should be processed in a special way. This paper describes the related signal processing issues, which include converting the time data into a continous spectrum, determination of the correct scaling factor for the analyzed spectrum, and smoothing out harmonics and fluctuations in the signal. This procedure yields a smooth frequency spectrum with a correctly scaled amplitude, in which the frequency contents can be easily identified.
Technical Paper

Estimation Of Damping Loss Factors By Using The Hilbert Transform And Exponential Average Method

2001-04-30
2001-01-1408
The damping loss factor of a structural panel plays a significant role in its vibro-acoustic performance. The objective of this paper is to present a new procedure for evaluating the damping loss factors of these panels. Traditionally, the damping loss factors are determined by using the decay rate of the decay curves which are experimentally obtained from the structure. However, this is time consuming and the accuracy is limited by fluctuations in the decay curve. In this paper, the envelope signal of each decay curve is determined through its Hilbert transform, and the remaining small fluctuations in the envelope signal are further smoothed out by the exponential average method. Finally, the damping loss factor is estimated based on the smoothed envelope signal of each decay curve. A computer program has been developed to implement this procedure. It is shown that this procedure improves both accuracy and efficiency of the decay rate method for estimating damping loss factor.
Technical Paper

Development of a Nonlinear Shock Absorber Model for Low-Frequency NVH Applications

2003-03-03
2003-01-0860
This paper dis cusses the development of a nonlinear shock absorber model for low-frequency CAE-NVH applications of body-on-frame vehicles. In CAE simulations, the shock absorber is represented by a linear damper model and is found to be inadequate in capturing the dynamics of shock absorbers. In particular, this model neither captures nonlinear behavior of shock absorbers nor distinguishes between compression and rebound motions of the suspension. Such an inadequacy limits the utility of CAE simulations in understanding the influence of shock absorbers on shake performance of body-on-frame vehicles in the low frequency range where shock absorbers play a significant role. Given this background, it becomes imperative to develop a shock absorber model that is not only sophisticated to describe shock absorber dynamics adequately but also simple enough to implement in full-vehicle simulations. This investigation addresses just that.
Technical Paper

Laminated Steel Forming Modeling Techniques and Experimental Verifications

2003-03-03
2003-01-0689
Laminated steel sheets sandwiched with a polymer core are increasingly used for automotive applications due to their vibration and sound damping properties. However, it has become a major challenge in finite element modeling of laminated steel structures and forming processes due to the extremely large differences in mechanical properties and in the gauges of the polymer core and the steel skins. In this study, circular cup deep drawing and V-bending experiments using laminated steels were conducted in order to develop a modeling technique for laminate forming processes. The effectiveness of several finite element modeling techniques was investigated using the commercial FEM code LS-Dyna. Furthermore, two production parts were selected to verify the modeling techniques in real world applications.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

Engine Cooling Fan Noise and Vibration Problem Caused by a Switching Power Supply

2003-05-05
2003-01-1672
A 50 Hz Solid-State Relay (SSR) was used to provide pulse-width-modulated power to engine cooling fans for continuous speed control, to reduce airflow noise and improve efficiency. However, this caused the cooling fans to vibrate at the switching frequency and harmonics, thus degrading vehicle NVH performance. This paper describes the problem associated with SSR- powered cooling fans, including root-cause analysis, and identification of areas sensitive to vibration affected by the switching power supply. Based on our analysis, we found several solutions to the problem. Our production solution and some generic recommendations for shroud design are presented in the paper.
Technical Paper

Structure Borne Insertion Loss of Sound Package Components

2003-05-05
2003-01-1549
Typical automotive sound package components are usually characterized by their absorption coefficients and their acoustic power-based insertion loss. This insertion loss (IL) is usually obtained by subtracting the transmission loss (TL) of a bare flat steel plate from the TL of the same plate covered with the trim material. While providing useful information regarding the performance of the component, air-borne insertion loss is based solely on acoustic excitations and thus provides very little information about the structure-borne performance of the component. This paper presents an attempt to introduce a standard procedure to define the power-based structure-borne insertion loss of sound package components. A flat steel plate is excited mechanically using a shaker. Different carpet constructions are applied on the plate and tested. Based on velocity measurements, a force transducer and intensity probe, the mechanical input and the acoustic radiated power are obtained.
Technical Paper

A Hybrid Method for Vehicle Axle Noise Simulation with Experimental Validation

2003-05-05
2003-01-1707
Recently, many authors have attempted to represent an automobile body in terms of experimentally derived frequency response functions (FRFs), and to couple the FRFs with a FEA model of chassis for performing a total system dynamic analysis. This method is called Hybrid FEA-Experimental FRF method, or briefly HYFEX. However, in cases where the chassis model does not include the bushing models, one can not directly connect the FRFs of the auto body to the chassis model for performing a total system dynamic analysis. In other cases when the chassis model includes the bushings, the bushing dynamic rates are modeled as constant stiffness rather than frequency dependent stiffness, the direct use of the HYFEX method will yield unsatisfactory results. This paper describes how the FRF's of the auto body and the frequency dependent stiffness data of the bushings can be combined with an appropriate mathematical formulation to better represent the dynamic characteristics of a full vehicle.
Technical Paper

Modal Overlap at Low Frequencies - A Stochastic Approach for Vehicle System Modal Management

2003-05-05
2003-01-1612
In the early stages of a vehicle program, it is a common practice to set target ranges for the global body, suspension and powertrain modes. This modal management process allows engineers to avoid potential noise and vibration problems stemming from strong overlap of major global modes. Before the first prototype hardware is built, finite element models of the body, suspension and powertrain are usually exercised to compare predicted versus targeted ranges of the major system modes in the form of a modal management chart. However, uncertainty associated with the design parameters, manufacturing process and other sources can lead to a major departure from the design intent when the first hardware prototype is built. In this study, a first order reliability method is used to predict variance of the eigen values due to parameter uncertainties. This allows the CAE engineers to add a “three sigma” bound on the eigen values reported in the modal management chart.
Technical Paper

Linear Acoustic Modelling using 1-D Flow Systems which represent Complex 3-D Components

2011-05-17
2011-01-1524
Acoustics of automotive intake and exhaust systems have been modelled very successfully for many years using 1D gas dynamic simulations. These use pseudo 3D models to allow complex components to be constructed from simple building blocks. In recent years, tools have appeared that automate the construction of network models from 3D geometries of intake and exhaust components. Using these tools, concurrent noise and performance predictions are a core part of most engine development programmes. However, there is still much interest in the more traditional field of linear acoustics: analysing the acoustic behaviour of isolated components or predicting radiated noise using a linear source. Existing approaches break the intake and exhaust system down into a set of components, each with known acoustic properties. They are then connected together to create a network that replicates the donor non-linear model.
Technical Paper

NVH Considerations for Zero Emissions Vehicle Driveline Design

2011-05-17
2011-01-1545
In response to environmental and fossil fuel usage concerns, the automotive industry will gradually move from Hybrid Electric Vehicles (HEV) which includes a shift of internal combustion engines toward Zero Emissions Vehicles (ZEV). Refinement is an important aspect in the successful adoption of any new technology and ZEV brings its own NVH challenges owing to the unique dynamic characteristics of the powertrain and driveline system. This paper presents considerations for addressing dynamic driveline NVH issues that are common to 100% electric vehicles; issues that manifest themselves as groans, rattles and clunks. A dynamic torsional analytical model of the powertrain & driveline will be presented. The analytical model served as the baseline for an extensive parametric study using the Genetic Algorithm (GA) technique, whereby the effectiveness of practical countermeasures was investigated.
Technical Paper

Vehicle NVH Prediction Technique for Engine Downsizing

2011-05-17
2011-01-1565
As fuel prices continue to be unstable the drive towards more fuel efficient powertrains is increasing. For engine original equipment manufacturers (OEMs) this means engine downsizing coupled with alternative forms of power to create hybrid systems. Understanding the effect of engine downsizing on vehicle interior NVH is critical in the development of such systems. The objective of this work was to develop a vehicle model that could be used with analytical engine mount force data to predict the vehicle interior noise and vibration response. The approach used was based on the assumption that the largest contributor to interior noise and vibration below 200 Hz is dominated by engine mount forces. An experimental transfer path analysis on a Dodge Ram 2500 equipped with a Cummins ISB 6.7L engine was used to create the vehicle model. The vehicle model consisted of the engine mount forces and vehicle paths that define the interior noise and vibration.
Technical Paper

Suspension Tuning Parameters Affecting Impact Harshness Performance Evaluation

2006-04-03
2006-01-0991
In this paper, a comprehensive evaluation index for impact harshness (IH) is proposed. A mid-sized uni-body SUV is selected for this study, with the acceleration responses at the various vehicle body locations as objective functions. A sensitivity study is conducted using an ADAMS full vehicle model with flexible body structure representation over an IH event to analyze the influence of various suspension tuning parameters, including suspension springs, shock damping, steer gear ratio, unsprung mass, track-width, and bushing stiffness.
Technical Paper

Achieving Diesel Vehicle Appeal Part 1: Vehicle NVH Perspective

2005-05-16
2005-01-2484
This paper describes a diesel vehicle NVH development process which has been applied to achieve a number of best in class products in the European diesel marketplace. It focuses upon: Key diesel vehicle NVH issues Critical success factors in the NVH development process NVH methodologies, tools and techniques which support this process Case studies using results taken largely from a luxury sedan vehicle development program are used to highlight the issues and to demonstrate the success of this process in achieving a vehicle with high diesel appeal. The paper concludes with an insight of how this process is being adapted and refocused to reflect the anticipated requirements of the potential US diesel vehicle marketplace.
X