Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Advanced Combustion & System Engineering - Affordable Fuel Economy?

2012-05-10
Future fuel economy targets represent a significant challenge to the automotive industry. While a range of technologies are in research and development to address this challenge, they all bring additional cost and complexity to future products. The most cost effective solutions are likely to be combinations of technologies that in isolation might have limited advantages but in a systems approach can offer complementary benefits. This presentation describes work carried out at Ricardo to explore Intelligent Electrification and the use of Stratified Charge Lean Combustion in a spark ignition engine. This includes a next generation Spray Guided Direct Injection SI engine combustion system operating robustly with highly stratified dilute mixtures and capable of close to 40% thermal efficiency with very low engine-out NOx emissions.
Journal Article

Enabling Safety and Mobility through Connectivity

2010-10-19
2010-01-2318
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) networks within the Intelligent Transportation System (ITS) lead to safety and mobility improvements in vehicle road traffic. This paper presents case studies that support the realization of the ITS architecture as an evolutionary process, beginning with driver information systems for enhancing feedback to the users, semi-autonomous control systems for improved vehicle system management, and fully autonomous control for improving vehicle cooperation and management. The paper will also demonstrate how the automotive, telecom, and data and service providers are working together to develop new ITS technologies.
Technical Paper

Driving Cycle Based Control and Calibration for a Turbocharged SI Engine with Low Pressure EGR System

2020-09-15
2020-01-2015
Low pressure cooled EGR (LPEGR) for spark ignition (SI) engines is known to be one of the key technologies to benefit fuel consumption owing to lower pumping loss at part load, knock suppression capability and extended stoichiometric operating range thanks to combustion cooling effect. In order to implement this technology to industrialised application with the optimal performance efficiently and robustly, several challenges need to be solved, especially the EGR estimation accuracy and transport delay estimation accuracy during transient. And these challenges could be more complex on a turbocharged SI engine due to the much longer induction system, and more complex air path model due to the introduction of turbine, compressor and dump valve. This paper describes the control and calibration method for a turbocharged LPEGR engine, and the validation result in Worldwide harmonized Light vehicles Test Cycles (WLTC).
Journal Article

Statistical Approach on Visualizing Multi-Variable Interactions in a Hybrid Breakup Model under ECN Spray Conditions

2017-09-04
2017-24-0104
The Direct Numerical Simulation (DNS) approach to solving the fundamental transport equations down to the smallest scales of motion is favorable should the requirement be a truly predictive solution of fluid dynamic problems, but the simulation run times are unacceptable for most practical industrial applications. Despite the steadily increasing computational capabilities, Reynolds Averaged Navier-Stokes (RANS) based frameworks remain the most commercially viable option for high volume sectors, like automotive. The sub models within RANS simplify the description of key physical phenomena and include several numerical constants. These so-called “tuning constants” introduce multivariable dependencies that are almost impossible to untangle with local sensitivity studies.
Journal Article

The Recuperated Split Cycle - Experimental Combustion Data from a Single Cylinder Test Rig

2017-09-04
2017-24-0169
The conventional Diesel cycles engine is now approaching the practical limits of efficiency. The recuperated split cycle engine is an alternative cycle with the potential to achieve higher efficiencies than could be achieved using a conventional engine cycle. In a split cycle engine, the compression and combustion strokes are performed in separate chambers. This enables direct cooling of the compression cylinder reducing compression work, intra cycle heat recovery and low heat rejection expansion. Previously reported analysis has shown that brake efficiencies approaching 60% are attainable, representing a 33% improvement over current advanced heavy duty diesel engine. However, the achievement of complete, stable, compression ignited combustion has remained elusive to date.
Journal Article

Application of Reference Governor Using Soft Constraints and Steepest Descent Method to Diesel Engine Aftertreatment Temperature Control

2013-04-08
2013-01-0350
This paper considers an application of reference governor (RG) to automotive diesel aftertreatment temperature control. Recently, regulations on vehicle emissions have become more stringent, and engine hardware and software are expected to be more complicated. It is getting more difficult to guarantee constraints in control systems as well as good control performance. Among model-based control methods that can directly treat constraints, this paper focuses on the RG, which has recently attracted a lot of attention as one method of model prediction-based control. In the RG, references in tracking control are modified based on future prediction so that the predicted outputs in a closed-loop system satisfy the constraints. This paper proposes an online RG algorithm, taking account of the real-time implementation on engine embedded controllers.
Journal Article

Studies on the Impact of 300 MPa Injection Pressure on Engine Performance, Gaseous and Particulate Emissions

2013-04-08
2013-01-0897
An investigation has been carried out to examine the influence of up to 300 MPa injection pressure on engine performance and emissions. Experiments were performed on a 4 cylinder, 4 valve / cylinder, 4.5 liter John Deere diesel engine using the Ricardo Twin Vortex Combustion System (TVCS). The study was conducted by varying the injection pressure, Start of Injection (SOI), Variable Geometry Turbine (VGT) vane position and a wide range of EGR rates covering engine out NOx levels between 0.3 g/kWh to 2.5 g/kWh. A structured Design of Experiment approach was used to set up the experiments, develop empirical models and predict the optimum results for a range of different scenarios. Substantial fuel consumption benefits were found at the lowest NOx levels using 300 MPa injection pressure. At higher NOx levels the impact was nonexistent. In a separate investigation a Cambustion DMS-500 fast particle spectrometer, was used to sample and analyze the exhaust gas.
Journal Article

Real-Time Crank-Resolved Engine Simulation for Testing New Engine Management Systems

2008-04-14
2008-01-1006
The development of control strategies for new Engine Management Systems requires a simulation tool to represent a model of the engine such that these strategies can be tested and verified. Current simulation tools for hardware-in-the loop (HiL) testing are limited to mean-value engine models. Although these lumped parameter type models are sufficient for current production Engine Management Systems, new technologies are emerging that would require sophisticated modeling tools to support the development of more complex systems such as closed-loop combustion control and for more thorough testing of onboard diagnostics. However, such hi-fidelity models have traditionally been distributed parameter typed models (e.g. WAVE), reserved for engine design purposes and therefore inappropriate for real-time testing. A new piece of software has been developed to bridge the gap between distributed and lumped parameter models.
Journal Article

The Effect of Low Viscosity Oil on the Wear, Friction and Fuel Consumption of a Heavy Duty Truck Engine

2013-04-08
2013-01-0331
This paper describes the results of a series of tests on a heavy-duty truck diesel engine using conventional and low viscosity lubricants. The objectives were to explore the impact of reducing lubricant viscosity on wear, friction and fuel consumption. The radiotracing Thin Layer Activation method was used to make on-line measurements of wear at the cylinder liner, top piston ring, connecting rod small end bush and intake cam lobe. The engine was operated under a wide range of conditions (load, speed and temperature) and with lubricants of several different viscosity grades. Results indicate the relationship between lubricant viscosity and wear at four critical locations. Wear at other locations was assessed by analysis of wear metals and post test inspection. The fuel consumption was then measured on the same engine with the same lubricants. Results indicate the relationship between oil viscosity and fuel consumption under a wide range of operating conditions.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
Technical Paper

Development of an Experimental FRF-Based Substructuring Model to Forward Predict the Effects of Beam Axle Design Modifications on Passenger Vehicle Axle Whine

2007-05-15
2007-01-2237
This paper describes the process used to develop an experimental model with forward prediction capabilities for passenger vehicle axle whine performance, focusing initially on beam axle design modifications. This process explains how experimental Transfer Path Analysis (TPA), Running Modes Analysis (RMA) and Modal Analysis were used along with an experimental FRF-Based Substructuring (FBS) model. The objective of FBS techniques is to predict the dynamic behavior of complex structures based on the dynamic properties of each component of the structure. The FBS model was created with two substructures, the body/suspension and the empty rear beam axle housing. Each step in the creation of the baseline FBS model was correlated, and the forward predictive capability was verified utilizing an experimental modification to the beam axle structure.
Technical Paper

Axle Imbalance Measurement and Balancing Strategies

2007-05-15
2007-01-2238
This paper summarizes a study on axle balance measurement and balancing strategies. Seven types of axles were investigated. Test samples were randomly selected from products. Two significant development questions were set out to be answered: 1) What is the minimum rotational speed possible in order to yield measured imbalance readings which correlated to in-vehicle imbalance-related vibration. What is the relationship between the measured imbalance and rotational speed. To this end, the imbalance level of each axle was measured using a test rig with different speeds from 800 to 4000 rpm with 200 rpm increments. 2) Is it feasible to balance axle sub-assemblies only and still result in a full-assembly that satisfies the assembled axle specification? To this end, the sub-assemblies were balanced on a balance machine to a specified level. Then with these balanced sub-assemblies, the full assemblies were completed and audited on the same balance test rig in the same way.
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Technical Paper

Validation of Vehicle NVH Performance using Experimental Modal Testing and In-Vehicle Dynamic Measurements

2007-05-15
2007-01-2320
NVH targets for future vehicles are often defined by utilizing a competitive benchmarking vehicle in conjunction with an existing production and/or reference vehicle. Mode management of full vehicle modes is one of the most effective and significant NVH strategies to achieve such targets. NVH dynamic characteristics of a full vehicle can be assessed and quantified through experimental modal testing for determination of global body mode resonance frequency, damping property, and mode shape. Major body modes identified from full vehicle modal testing are primarily dominated by the vehicle's body-in-white structure. Therefore, an estimate of BIW modes from full vehicle modes becomes essential, when only full vehicle modes from experimental modal testing exist. Establishing BIW targets for future vehicles confines the fundamental NVH behavior of the full vehicle.
Technical Paper

Application of the Modal Compliance Technique to a Vehicle Body in White

2007-05-15
2007-01-2355
This paper describes the application of the modal compliance method to a complex structure such as a vehicle body in white, and the extension of the method from normal modes to the complex modes of a complete vehicle. In addition to the usual bending and torsion calculations, the paper also describes the application of the method to less usual tests such as second torsion, match-boxing and breathing. We also show how the method can be used to investigate the distribution of compliance throughout the structure.
Technical Paper

NVH Refinement of Diesel Powered Sedans with Special Emphasis on Diesel Clatter Noise and Powertrain Harshness

2007-05-15
2007-01-2378
NVH refinement of passenger vehicles is crucial to customer acceptance of contemporary vehicles. This paper describes the vehicle NVH development process, with specific examples from a Diesel sedan application that was derived from gasoline engine-based vehicle architecture. Using an early prototype Diesel vehicle as a starting point, this paper examines the application of a Vehicle Interior Noise Simulation (VINS) technique in the development process. Accordingly, structureborne and airborne noise shares are analyzed in the time-domain under both steady-state and transient test conditions. The results are used to drive countermeasure development to address structureborne and airborne noise refinement. Examples are provided to highlight the refinement process for “Diesel knocking” under idle as well as transient test conditions. Specifically, the application of VINS to understanding the influence of high frequency dynamic stiffness of hydro-mounts on Diesel clatter noise is examined.
Technical Paper

A New Method for Obtaining FRF of a Structure in Area Where Impact Hammer Cannot Reach

2007-05-15
2007-01-2385
The Frequency Response Function (FRF) is a fundamental component to identifying the dynamic characteristics of a system. FRF's have a significant impact on modal analysis and root cause analysis of NVH issues. In most cases the FRF can be easily measured, but there are instances when the measurement is unobtainable due to spatial constraints. This paper outlines a simple experimental method for obtaining a high quality input-output FRF of a structure in areas where an impact hammer can not reach during impact testing. Traditionally, the FRF in such an area is obtained by using a load cell extender with a hammer impact excitation. A common problem with this device is a double hit, that yields unacceptable results.
Technical Paper

Accurate Torque Control of IPM Machines for ISG Hybrid Vehicle Applications

2007-08-05
2007-01-3482
Ricardo/Chery have been involving in developing ISG (Integrated Starter/Generator) hybrid technologies. The objective of this paper is to summarize our experience in achieving accurate torque control of an IPM machine (Interior Permanent Synchronous Machine) for mild ISG hybrid vehicle applications. This paper focus on presenting the issues including IPM machine development, IPM dq-axis inductance detection method and theoretical background, MTPA (Maximum Torque Per Ampere) control for IPM, flux-weakening control strategy and test results analysis. The proposed torque control has been proved in test with less than 3% torque control inaccuracy.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
X