Refine Your Search

Topic

Search Results

Technical Paper

Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

2007-07-09
2007-01-3036
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
Technical Paper

Inhibition of Biofilm Formation on the Service and Performance Heat Exchanger by Quorum Sensing Inhibition

2007-07-09
2007-01-3143
Shortly after installation of the service and performance heat exchanger (SPCU HX) in 2001, samples collected from the coolant fluid indicated the presence of nickel accompanied by a subsequent decrease in phosphate concentration along with a high microbial load. When the SPCU HX was replaced and evaluated post-flight, it was expected that the heat exchanger would have significant biofilm and corrosion present given the composition of the coolant fluid; however, there was no evidence of either. Early results from two experiments imply that the heat exchanger materials themselves are inhibiting biofilm formation. This paper discusses the results of one set of experiments and puts forward the inhibition of quorum sensing as a possible mechanism for the lack of biofilm formation.
Technical Paper

Summary of Current and Future MSFC International Space Station Environmental Control and Life Support System Activities

1997-07-01
972331
The paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station(ISS).Current activities computer model development, component design and development, subsystem/integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.
Technical Paper

Investigation of Mars In-Situ Propellant Production

1997-07-01
972496
In-situ production of oxygen and methane for utilization as a return propellant from Mars for both sample-return and manned missions is currently being developed by NASA in cooperation with major aerospace companies. Various technologies are being evaluated using computer modeling and analysis at the system level. An integrated system that processes the carbon dioxide in the Mars atmosphere to produce liquid propellants has been analyzed. The system is based on the Sabatier reaction that utilizes carbon dioxide and hydrogen to produce methane and water. The water is then electrolyzed to produce hydrogen and oxygen. While the hydrogen is recycled, the propellant gases are liquefied and stored for later use. The process model considers the surface conditions on Mars (temperature, pressure, composition), energy usage, and thermal integration effects on the overall system weight and size. Current mission scenarios require a system that will produce 0.7 kg of propellant a day for 500 days.
Technical Paper

Diode-Laser Spectral Absorption-Based Gas Species Sensor for Life Support Applications

1997-07-01
972388
We present the development of a semiconductor diode laser spectral absorption based gas species sensor for oxygen concentration measurements, intended for life support system monitoring and control applications. Employing a novel self-compensating, noise cancellation detection approach, we experimentally demonstrate better than 1% accuracy, linearity, and stability for monitoring breathing air conditions with 0.2 second response time. We also discuss applications of this approach to CO2 sensing.
Technical Paper

Performance of the Atmosphere Revitalization System During Phase II of the Lunar-Mars Life Support Test Project

1997-07-01
972418
The Lunar-Mars Life Support Test Project (LMLSTP), formerly known as the Early Human Testing Initiative (EHTI), was established to perform the necessary research, technology development, integration, and verification of regenerative life support systems to provide safe, reliable, and self-sufficient human life support systems. Four advanced life support system test phases make up LMLSTP. Phase I of the test program demonstrated the use of plants to provide the atmosphere revitalization requirements of a single test subject for 15 days. The primary objective of the Phase II test was to demonstrate an integrated regenerative life support system capable of sustaining a human crew of four for 30 days in a closed chamber. The third test phase, known as Phase IIA, served as a demonstration of International Space Station (ISS) representative life support technology, supporting a human crew of four for 60 days.
Technical Paper

Columbus Orbital Facility Condensing Heat Exchanger and Filter Assembly

1997-07-01
972409
Space environmental control systems must control cabin temperature and humidity. This can be achieved by transferring the heat load to a circulating coolant, condensing the humidity, and separating the condensate from the air stream. In addition, environmental control systems may be required to remove particulate matter from the air stream. An assembly comprised of a filter, a condensing heat exchanger, a thermal control valve, and a liquid carryover sensor, is used to achieve all these requirements. A condensing heat exchanger and filter assembly (CHXFA) is being developed and manufactured by SECAN/AlliedSignal under a contract from Dornier Daimler-Benz as part of a European Space Agency program. The CHXFA is part of the environmental control system of the Columbus Orbital Facility (COF), the European laboratory module of the International Space Station (ISS).
Technical Paper

A Thermal Control System Dual-Membrane Gas Trap for the International Space Station

1997-07-01
972410
The dual membrane gas trap filter is utilized in the internal thermal control system (ITCS) as part of the pump package assembly to remove non-condensed gases from the ITCS coolant. This improves pump performance and prevents pump cavitation. The gas trap also provides the capability to vent air that is Ingested into the ITCS during routine maintenance and replacement of the International Space Station (ISS) system orbital replacement units. The gas trap is composed of two types of membranes that are formed into a cylindrical module and then encased within a titanium housing. The non-condensed gas that is captured is then allowed to escape through a vent tube in the gas trap housing.
Technical Paper

Solid Polymer Electrolyte Oxygen Generator Assembly Life Testing at MSFC - The First Year

1997-07-01
972376
A two year test program has been initiated to evaluate the effects of extended duration operation on a solid polymer electrolyte Oxygen Generator Assembly (OGA); in particular the cell stack and membrane phase separators. As part of this test program, the OGA was integrated into the Marshall Space Flight Center (MSFC) Water Recovery Test (WRT) Stage 10, a six month test, to use reclaimed water directly from the water processor product water storage tanks. This paper will document results encountered and evaluated thus far in the life testing program.
Technical Paper

Advanced Portable Life Support System Fan Controller

1998-07-13
981675
Advanced space suit portable life support systems (PLSS) require high performance fans for the breathing gas ventilation system. AlliedSignal has developed a high speed air bearing fan for this application. This work addresses the development of an advanced electronic controller to drive this fan. Advances in space suit technology required an improved fan controller. The architecture of the controller was modified to enhance performance and facilitate testing in a space environment. These modifications were both physical and functional. To reduce the size of the controller, electrical, electronic and electromechanical (EEE) components were divided into two circuit cards, the housing was redesigned, test points and control knobs were removed, and a higher grade of EEE components were used in the development of the controller. These modifications improved the functional characteristics of the controller.
Technical Paper

The Lunar-Mars Life Support Test Project Phase III 90-day Test: The Crew Perspective

1998-07-13
981702
The Lunar-Mars Life Support Test Project (LMLSTP) Phase III test examined the use of biological and physicochemical life support technologies for the recovery of potable water from waste water, the regeneration of breathable air, and the maintenance of a shirt-sleeve environment for a crew of four persons for 91 days. This represents the longest duration ground-test of life support systems with humans performed in the United States. This paper will describe the test from the inside viewpoint, concentrating on three major areas: maintenance and repair of life support elements, the scientific projects performed primarily in support of the International Space Station, and numerous activities in the areas of public affairs and education outreach.
Technical Paper

Life Support Requirements and Technology Challenges for NASA's Constellation Program

2008-06-29
2008-01-2018
NASA's Constellation Program, which includes the mission objectives of establishing a permanently-manned lunar Outpost, and the exploration of Mars, poses new and unique challenges for human life support systems that will require solutions beyond the Shuttle and International Space Station state of the art systems. In particular, the requirement to support crews for extended durations at the lunar outpost with limited resource resupply capability will require closed-loop regenerative life support systems with minimal expendables. Planetary environmental conditions such as lunar dust and extreme temperatures, as well as the capability to support frequent and extended-duration Extra-vehicular Activity's (EVA's) will be particularly challenging.
Technical Paper

Human-rating Automated and Robotic Systems — How HAL Can Work Safely with Astronauts

2009-07-12
2009-01-2527
Long duration human space missions, as planned in the Vision for Space Exploration, will not be possible without applying unprecedented levels of automation to support the human endeavors. The automated and robotic systems must carry the load of routine “housekeeping” for the new generation of explorers, as well as assist their exploration science and engineering work with new precision. Fortunately, the state of automated and robotic systems is sophisticated and sturdy enough to do this work — but the systems themselves have never been human-rated as all other NASA physical systems used in human space flight have. Our intent in this paper is to provide perspective on requirements and architecture for the interfaces and interactions between human beings and the astonishing array of automated systems; and the approach we believe necessary to create human-rated systems and implement them in the space program.
Technical Paper

Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

2003-07-07
2003-01-2538
An austere fiscal environment in the aerospace community creates pressure to reduce program costs, often minimizing or even deleting human interface requirements from the design process. With the assumption that the flight crew can recover, in real time, from a poorly human factored space vehicle design, the classical crew interface requirements have either been not included in the design or not properly funded, even though they are carried as requirements. Cost cuts have also affected the quality of retained human factors engineering personnel. Planning is ongoing to correct these issues. Herein are techniques for ensuring that human interface requirements are integrated with flight design from proposal through verification and launch activation.
Technical Paper

Development of the Next Generation Gas Trap for the Space Station Internal Thermal Control System

2003-07-07
2003-01-2566
The current dual-membrane gas trap is designed to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Design goals are to meet or exceed the current requirements to (1) include greater operating ranges and conditions, (2) eliminate reliance on the current hydrophilic tube fabrication process, and (3) increase operational life and tolerance to particulate and microbial growth fouling.
Technical Paper

Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

2003-07-07
2003-01-2565
A dual-membrane gas trap is currently used to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the NCG. The inner hydrophobic fiber allows the trapped NCG to pass through and vent to the ambient atmosphere in the cabin. The purpose of the gas trap is to prevent gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump, and the current gas trap has performed flawlessly in this regard. However, because of actual operational conditions on-orbit, its gas removal performance and operational lifetime have been affected.
Technical Paper

Development of a Direct Drive Hall Effect Thruster System

2002-10-29
2002-01-3212
A three-year program to develop a Direct Drive Hall Effect Thruster (D2HET) system began 15 months ago as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems. The D2HET will employ solar arrays that operate at voltages greater than 300V, and will be an enabling technology for affordable planetary exploration. It will also be a stepping-stone in the production of the next generation of power systems for Earth orbiting satellites. This paper provides a general overview of the program and reports the first year's findings from both theoretical and experimental components of the program.
Technical Paper

Liquid Propulsion Turbomachinery Model Testing

1992-04-01
921029
For the past few years an extensive experimental program to understand the fluid dynamics of the Space Shuttle Main Engine hot gas manifold has been in progress at Marshall Space Flight Center (MSFC). This program includes models of the Phase II and II+ manifolds for each of the air and water flow facilities, as well as two different turbine flow paths and two simulated power levels for each manifold. All models are full scale (geometric). The water models are constructed partially of acrylic to allow flow visualization. The intent of this paper is to discuss the concept, including the test objectives, the facilities, and the models, and to summarize the data for an example configuration, including static pressure data, flow visualization, and the solution of a specific flow problem.
Technical Paper

A Co-Simulation Framework for Full Vehicle Analysis

2011-04-12
2011-01-0516
The paper describes a methodology to co-simulate, with high fidelity, simultaneously and in one computational framework, all of the main vehicle subsystems for improved engineering design. The co-simulation based approach integrates in MATLAB/Simulink a physics-based tire model with high fidelity vehicle dynamics model and an accurate powertrain model allowing insights into 1) how the dynamics of a vehicle affect fuel consumption, quality of emission and vehicle control strategies and 2) how the choice of powertrain systems influence the dynamics of the vehicle; for instance how the variations in drive shaft torque affects vehicle handling, the maximum achievable acceleration of the vehicle, etc. The goal of developing this co-simulation framework is to capture the interaction between powertrain and rest of the vehicle in order to better predict, through simulation, the overall dynamics of the vehicle.
X