Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Sensor Data Fusion for Active Safety Systems

2010-10-19
2010-01-2332
Active safety systems will have a great impact in the next generation of vehicles. This is partly originated by the increasing consumer's interest for safety and partly by new traffic safety laws. Control actions in the vehicle are based on an extensive environment model which contains information about relevant objects in vehicle surroundings. Sensor data fusion integrates measurements from different surround sensors into this environment model. In order to avoid system malfunctions, high reliability in the interpretation of the situation, and therefore in the environment model, is essential. Hence, the main idea of data fusion is to make use of the advantages of using multiple sensors and different technologies in order to fulfill these requirements, which are especially high due to autonomous interventions in vehicle dynamics (e. g. automatic emergency braking).
Journal Article

Online Engine Speed Based Adaptation of Air Charge for Two- Wheelers

2013-10-15
2013-32-9037
Regarding the strongly growing two-wheeler market fuel economy, price and emission legislations are in focus of current development work. Fuel economy as well as emissions can be improved by introduction of engine management systems (EMS). In order to provide the benefits of an EMS for low cost motorcycles, efforts are being made at BOSCH to reduce the costs of a port fuel injection (PFI) system. The present paper describes a method of how to reduce the number of sensors of a PFI system by the use of sophisticated software functions based on high-resolution engine speed evaluation. In order to improve the performance of a system working without a MAP-sensor (manifold air pressure sensor) an air charge feature (ACFn) based on engine speed is introduced. It is shown by an experiment that ACFn allows to detect and adapt changes in manifold air pressure. Cross-influences on ACFn are analyzed by simulations and engine test bench measurements.
Journal Article

Experimental Investigation of Fuel Impingement and Spray-Cooling on the Piston of a GDI Engine via Instantaneous Surface Temperature Measurements

2014-04-01
2014-01-1447
In order to comply with more and more stringent emission standards, like EU6 which will be mandatory starting in September 2014, GDI engines have to be further optimized particularly in regard of PN emissions. It is generally accepted that the deposition of liquid fuel wall films in the combustion chamber is a significant source of particulate formation in GDI engines. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction [1]. In order to quantify this temperature drop at combustion chamber surfaces, surface temperature measurements on the piston of a single-cylinder engine were conducted. Therefore, eight fast-response thermocouples were embedded 0.3 μm beneath the piston surface and the signals were transmitted from the moving piston to the data acquisition system via telemetry.
Journal Article

Gasoline Wall Films and Spray/Wall Interaction Analyzed by Infrared Thermography

2014-04-01
2014-01-1446
Due to the principle of direct injection, which is applied in modern homogeneously operated gasoline engines, there are various operation points with significant particulate emissions. The spray droplets contact the piston surface during the warm-up and early injections, in particular. The fuel wall films and the resulting delayed evaporation of the liquid fuel is one of the main sources of soot particles. It is therefore necessary to carry out investigations into the formation of wall film. The influence of the spray impact angle is of special interest, as this is a major difference between engines with side-mounted injectors and centrally positioned injectors. This paper describes an infrared thermography-based method, which we used to carry out a systematic study of fuel deposits on the walls of the combustion chamber. The boundary conditions of the test section were close to those of real GDI engines operated with homogeneous charge.
Journal Article

Online Engine Speed based Adaptation of Combustion Phasing and Air-Fuel Ratio

2014-11-11
2014-32-0076
Equipping low cost two-wheelers with engine management systems (EMS) enables not only a reduction of emissions but also an improvement in fuel consumption and system robustness. These benefits are accompanied by initially higher system costs compared to carburetor systems. Therefore, intelligent software solutions are developed by Bosch, which enable a reduction of the necessary sensors for a port fuel injection system (PFI) and furthermore provide new possibilities for combustion control. One example for these intelligent software solutions is a model based evaluation of the engine speed. By use of the information contained in the engine speed signal, characteristic features like air charge, indicated mean effective pressure (imep) and combustion phasing are derivable. The present paper illustrates how these features could be used to reduce the system costs and to improve fuel consumption and system robustness.
Journal Article

Online Engine Speed based Altitude Adaptation of Air Charge and Limp Home for Two-Wheelers

2014-11-11
2014-32-0067
Cost reduction of engine management systems (EMS) for two-wheeler applications is the key to utilize their potentials compared to carburetor bikes regarding emissions, fuel economy and system robustness. In order to reduce the costs of a system with port fuel injection (PFI) Bosch is developing an EMS without a manifold air pressure (MAP) sensor. The pressure sensor is usually used to compensate for different influences on the air mass, which cannot be detected via the throttle position sensor (TPS) and mean engine speed. Such influences are different leakage rates of the throttle body and changing ambient conditions like air pressure. Bosch has shown in the past that a virtual sensor relying on model based evaluation of engine speed can be used for a detection of leakage air mass in idling to improve the pre-control of the air-fuel ratio. This provides a functionality which so far was only possible with an intake pressure sensor.
Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

Prediction of Internal Responses Due to Changes in Boundary Conditions Using System Frequency Response Functions

2021-08-31
2021-01-1058
Vibration testing is often carried out for automotive components to meet guidelines based on their operational environments. This is an iterative process wherein design changes may need to be made depending on an intermediate model’s dynamic behavior. Predicting the behavior based on modifications in boundary conditions of a well-defined numerical model imparts practical insights to the component’s responses. To this end, application of a general method using experimental free-free condition frequency response functions of a structure is discussed in the presented work. The procedure is shown to be useful for prediction of responses when kinematic boundary conditions are applied, without the need for an actual measurement. This approach is outlined in the paper and is applied to datasets where dynamic modifications are made at multiple boundary nodes.
Technical Paper

Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations

2020-04-14
2020-01-1157
Further improvements of internal combustion engines to reduce fuel consumption and to face future legislation constraints are strictly related to the study of mixture formation. The reason for that is the desire to supply the engine with homogeneous charge, towards the direction of a global stoichiometric blend in the combustion chamber. Fuel evaporation and thus mixture quality mostly depend on injector atomization features and charge motion within the cylinder. 3D-CFD simulations offer great potential to study not only injector atomization quality but also the evaporation behavior. Nevertheless coupling optical measurements and simulations for injector analysis is an open discussion because of the large number of influencing parameters and interactions affecting the fuel injection’s reproducibility. For this purpose, detailed numerical investigations are used to describe the injection phenomena.
Technical Paper

A Phenomenological Unburned Hydrocarbon Model for Diesel Engines

2020-09-15
2020-01-2006
Intensified emission regulations as well as consumption demands lead to an increasing significance of unburned hydrocarbon (UHC) emissions for diesel engines. On the one hand, the quantity of hydrocarbon (HC) raw emissions is important for emission predictions as well as for the exhaust after treatment. On the other hand, HC emissions are also important for predicting combustion efficiency and thus fuel consumption, since a part of unreleased chemical energy of the fuel is still bound in the HC molecules. Due to these reasons, a simulation model for predicting HC raw emissions was developed for diesel engines based on a phenomenological two-zone model. The HC model takes three main sources of HC emissions of diesel engines into account: Firstly, it contains a sub-model that describes the fuel dribble out of the injector after the end of injection. Secondly, HC emissions from cold peripheral zones near cylinder walls are determined in another sub-model.
Technical Paper

Evaluation of Geometry-Dependent Spray Hole Individual Mass Flow Rates of Multi-Hole High-Pressure GDI-Injectors Utilizing a Novel Measurement Setup

2020-09-15
2020-01-2123
In order to optimize spray layouts of commonly used high-pressure injectors for gasoline direct injection (GDI) engines featuring multi-hole valve seats, a detailed understanding of the cause-effect relation between inner spray hole geometries and inner flow conditions, initializing the process of internal mixture formation, is needed. Therefore, a novel measurement setup, capable of determining spray hole individual mass flow rates, is introduced and discussed. To prove its feasibility, a 2-hole configuration is chosen. The injected fuel quantities are separated mechanically and guided to separate pressure tight measurement chambers. Each measurement chamber allows for time resolved mass flow rate measurements based on the HDA measurement principle (German: “Hydraulisches Druck-Anstiegsverfahren”).
Technical Paper

Discretization and Heat Transfer Calculation of Engine Water Jackets in 1D-Simulation

2020-04-14
2020-01-1349
The industry is working intensively on the precision of thermal management. By using complex thermal management strategies, it is possible to make engine heat distribution more accurate and dynamic, thereby increasing efficiency. Significant efforts are made to improve the cooling efficiency of the engine water jacket by using 3D CFD. As well, 1D simulation plays a significant role in the design and analysis of the cooling system, especially for considering transient behaviour of the engine. In this work, a practice-oriented universal method for creating a 1D water jacket model is presented. The focus is on the discretization strategy of 3D geometry and the calculation of heat transfer using Nusselt correlations. The basis and reference are 3D CFD simulations of the water jacket. Guidelines for the water jacket discretization are proposed. The heat transfer calculation in the 1D-templates is based on Nusselt-correlations (Nu = Nu(Re, Pr)), which are derived from 3D CFD simulations.
Journal Article

An Adaptive Software Architecture for Future CMS

2015-09-15
2015-01-2545
Aircraft cabin systems, especially cabin management systems (CMS) have to cope with frequent cabin changes during their lifecycle. This includes not only layout rearrangements and technological upgrades during the service, but also extensive CMS customizations and product variations before aircraft delivery. Therefore it is inevitable for the CMS to be highly changeable and offer an easy and agile change process. Today's CMS solutions face this challenge with configurable system architectures. Although such architectures offer a vast change domain, they usually come with time consuming and error prone change processes. This paper introduces an adaptive avionics software architecture that enables the CMS to cope with cabin changes highly automatically and with minimal human interactions. The adaptation is performed during an on ground organization phase, in which system changes are detected and evaluated by the CMS itself.
Journal Article

Predictive Multi-Objective Operation Strategy Considering Battery Cycle Aging for Hybrid Electric Vehicles

2018-04-03
2018-01-1011
Due to the new CO2 targets for vehicles, electrification of powertrains and operation strategies for electrified powertrains have drawn more attention. This article presents a predictive multi-objective operation strategy for hybrid electric vehicles (HEVs), which simultaneously minimizes the fuel consumption and the cycle aging of traction batteries. This proposed strategy shows better performance by using predictive information and high robustness to inaccuracy of predictive information. In this work, the benefits of the developed operation strategies are demonstrated in a strong hybrid electric vehicle (sHEV) with P2-configuration. For the cycle aging of a lithium-ion battery, an empirical model is built up with Gaussian processes based on experimental data.
Journal Article

Use of an Eulerian/Lagrangian Framework to Improve the Air Intake System of an Automobile with Respect to Snow Ingress

2017-03-28
2017-01-1319
A simulation approach to predict the amount of snow which is penetrating into the air filter of the vehicle’s engine is important for the automotive industry. The objective of our work was to predict the snow ingress based on an Eulerian/Lagrangian approach within a commercial CFD-software and to compare the simulation results to measurements in order to confirm our simulation approach. An additional objective was to use the simulation approach to improve the air intake system of an automobile. The measurements were performed on two test sites. On the one hand we made measurements on a natural test area in Sweden to reproduce real driving scenarios and thereby confirm our simulation approach. On the other hand the simulation results of the improved air intake system were compared to measurements, which were carried out in a climatic wind tunnel in Stuttgart.
Technical Paper

The Isochoric Engine

2020-04-14
2020-01-0796
For the gasoline engine, the isochoric process is the ideal limit of the ideal processes. During the project, a combustion engine with real isochoric boundary conditions is built. A “resting time” of the piston for several degrees crank angle in the top dead center (TDC) can be realized with a special crank drive. This crank drive consists of two crankshafts with different strokes, which are combined. The two crankshafts rotate with a ratio of two to one in opposite directions. The total stroke corresponds to the amount of the first crankshaft, so it is possible to investigate different strokes of the second crankshaft in the same crankcase. Different “resting times” can be achieved by different strokes of the second crankshaft. A specific combination of both crankshafts make a stroke possible which corresponds to that of a conventional combustion engine.
Technical Paper

Predicting the Influence of Charge Air Temperature Reduction on Engine Efficiency, CCV and NOx-Emissions of a Large Gas Engine Using a SI Burn Rate Model

2020-04-14
2020-01-0575
In order to meet increasingly stringent exhaust emission regulations, new engine concepts need to be developed. Lean combustion systems for stationary running large gas engines can reduce raw NOx-emissions to a very low level and enable the compliance with the exhaust emission standards without using a cost-intensive SCR-aftertreatment system. Experimental investigations in the past have already confirmed that a strong reduction of the charge air temperature even below ambient conditions by using an absorption chiller can significantly reduce NOx emissions. However, test bench operation of large gas engines is costly and time-consuming. To increase the efficiency of the engine development process, the possibility to use 0D/1D engine simulation prior to test bench studies of new concepts is investigated using the example of low temperature charge air cooling. In this context, a reliable prediction of engine efficiency and NOx-emissions is important.
Journal Article

Fault Diagnosis of Fully Variable Valve Actuators on a Four Cylinder Camless Engine

2008-04-14
2008-01-1353
Fully Variable Valve Actuation (FVVA) systems enable to employ a wide range of combustion strategies by providing the actuation of a gas exchange valve at an arbitrary point in time, with variable lift and adjustable ramps for opening and closing. Making such a system ready for the market requires appropriate fault-diagnostic functionality. Here, we focus on diagnosis possibilities by using air intake system sensors such as Manifold Absolute Pressure (MAP) sensors. Results obtained on a 4-cylinder test bench engine are presented for the early intake opening strategy under different loads, and at medium range rotational speeds on steady-state conditions. It is shown that detection and identification of the different critical faults on each actuator is possible by using a Fourier series signal model of the MAP sensor.
Journal Article

Estimation of Cylinder-Wise Combustion Features from Engine Speed and Cylinder Pressure

2008-04-14
2008-01-0290
Advanced engine control and diagnosis strategies for internal combustion engines need accurate feedback information from the combustion engine. The feedback information can be utilized to control combustion features which allow the improvement of engine's efficiency through real-time control and diagnosis of the combustion process. This article describes a new method for combustion phase and IMEP estimation using one in-cylinder pressure and engine speed. In order to take torsional deflections of the crankshaft into account a gray-box model of the crankshaft is identified by subspace identification. The modeling accuracy is compared to a stiff physical crankshaft model. For combustion feature estimation, the identified MISO (multiple input single output) system is inverted. Experiments for a four-cylinder spark-ignition engine show the superior performance of the new method for combustion feature estimation compared to a stiff model approach.
Journal Article

Investigations on the Transient Wall Heat Transfer at Start-Up for SI Engines with Gasoline Direct Injection

2009-04-20
2009-01-0613
The introduction of CO2-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emissions regulations require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes it necessary to carry out an explicit thermodynamic analysis of the combustion process during the start-up. As of today, the well-known thermodynamic analysis using in-cylinder pressure traces at stationary condition is transmitted to the highly dynamic engine start-up. Due to this approximation the current models for calculation of the transient wall heat fluxes by Woschni, Hohenberg and Bargende do not lead to desired results. But with a fraction of approximately 40 % of the burnt fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis during start-up.
X