Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental and Numerical Analyses for the Characterization of the Cyclic Dispersion and Knock Occurrence in a Small-Size SI Engine

2010-09-28
2010-32-0069
In this paper, an experimental and numerical analysis of combustion process and knock occurrence in a small displacement spark-ignition engine is presented. A wide experimental campaign is preliminarily carried out in order to fully characterize the engine behavior in different operating conditions. In particular, the acquisition of a large number of consecutive pressure cycle is realized to analyze the Cyclic Variability (CV) effects in terms of Indicated Mean Effective Pressure (IMEP) Coefficient of Variation (CoV). The spark advance is also changed up to incipient knocking conditions, basing on a proper definition of a knock index. The latter is estimated through the decomposition and the FFT analysis of the instantaneous pressure cycles. Contemporary, a quasi-dimensional combustion and knock model, included within a whole engine one-dimensional (1D) modeling framework, are developed. Combustion and knock models are extended to include the CV effects, too.
Technical Paper

Analysis and Control of Noise Emissions of a Small Single Cylinder D.I. Diesel Engine

2003-05-05
2003-01-1459
Comfort requirements, government regulations as well as consumer action groups are pressing the automotive industry to produce less noisy vehicles than in the past. These circumstances become more and more important for off-road and human operating machines forcing engine developers to investigate new and more effective control strategies of noise emissions. This paper concerns with the experimental vibro-acoustic analysis of a small (224 cc) single-cylinder direct-injection diesel engine used for agricultural and industrial applications as well as off road small vehicles. In order to evaluate the engine acoustic behaviour, experimental identification and localization of noise sources were performed at different speed and load engine conditions by several investigating tools. Within them, the intensity technique was chosen because of its peculiarities to be performed “in situ” without a specific anechoic test environment.
X