Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Standardized Optical Constants for Soot Quantification in High-Pressure Sprays

2018-04-03
2018-01-0233
Soot formation in high-pressure n-dodecane sprays is investigated under conditions relevant to heavy-duty diesel engines. Sprays are injected from a single-hole diesel injector belonging to the family of engine combustion network (ECN) Spray D injectors. Soot is quantified using a high-speed extinction imaging diagnostic with incident light wavelengths of 623 nm and 850 nm. Previously, soot measurements in a high-pressure spray using 406-nm and 520-nm incident light demonstrated a minimal wavelength dependence in the complex refractive index of soot (m), as demonstrated by a near unity ratio of the non-dimensional extinction coefficients (ke,406 nm/ke,520 nm). The present work, however, demonstrates a significant difference in m for measurements with infrared incident light. During the quasi-steady period of the spray combustion event, the experimentally determined ke ratio (ke,623 nm/ke,850 nm) is 1.42 ± 0.27.
Technical Paper

Ignition and Soot Formation/Oxidation Characteristics of Compositionally Unique International Diesel Blends

2019-04-02
2019-01-0548
With the global adoption of diesel common rail systems and the wide variation in composition of local commercial fuels, modern fuel injection systems must be robust against diverse fuel properties. To bridge the knowledge gap on the effects of compositional variation for real commercial fuels on spray combustion characteristics, the present work quantifies ignition and soot formation/oxidation in three unique, international diesel blends. Schlieren imaging, excited-state hydroxyl radical (OH*) chemiluminescence imaging and diffused back-illumination extinction imaging were employed to quantify vapor penetration, ignition, and soot formation and oxidation for high-pressure sprays in a constant-volume, pre-burn chamber. The three fuels were procured from Finland, Japan and Brazil and have cetane numbers of 64.1, 56.1 and 45.4, respectively.
X