Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Influence of the Flow Field on Flame Propagation in a Hydrogen-Fueled Internal Combustion Engine

2011-09-11
2011-24-0098
Flame propagation in an optically accessible hydrogen-fueled internal combustion engine was visualized by high-speed schlieren imaging. Two intake configurations were evaluated: low tumble with a tumble ratio of 0.22, corresponding to unmodified intake ports, and high tumble with a tumble ratio of 0.70, resulting from intake modification. For each intake configuration, fueling was either far upstream of the engine, with presumably no influence on the intake flow, or the fuel was injected directly early during the compression stroke from an angled single-hole injector, adding significant angular momentum to the in-cylinder flow. Crank-angle resolved schlieren imaging during combustion allowed deducing apparent flame location and propagation speed, which were then correlated with in-cylinder pressure measurements on a single-cycle basis. In a typical cycle, flame shape and convective displacement are strongly affected by the in-cylinder flow.
Technical Paper

Numerical and Optical Evolution of Gaseous Jets in Direct Injection Hydrogen Engines

2011-04-12
2011-01-0675
This paper performs a parametric analysis of the influence of numerical grid resolution and turbulence model on jet penetration and mixture formation in a DI-H2 ICE. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located single-hole injector nozzle. The simulation includes the intake and exhaust port geometry, in order to account for the actual flow field within the cylinder when injection of hydrogen starts. A reduced geometry is then used to focus on the mixture formation process. The numerically predicted hydrogen mole-fraction fields are compared to experimental data from quantitative laser-based imaging in a corresponding optically accessible engine. In general, the results show that with proper mesh and turbulence settings, remarkable agreement between numerical and experimental data in terms of fuel jet evolution and mixture formation can be achieved.
X