Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Development of Fast Idle Catalyst Light-Off Strategy for Gasoline Compression Ignition Engine - Part 2

2020-04-14
2020-01-0314
The present investigation expands on our previous work on development of fast idle catalyst light-off strategy for a light duty gasoline compression ignition (GCI) engine. In part 1, the steady state experimental investigation in a single cylinder GCI engine indicate an optimum strategy for effective catalyst light off during cold start fast idle operation. According to this strategy, the strategy includes (1) dispersing a first fuel injection during the intake stroke, (2) dispersing a second fuel injection during the expansion stroke, and (3) igniting a spark during the expansion stroke. This strategy increases the exhaust temperature during cold starts thereby assisting in lighting the oxidation catalyst, and reduce emissions and provide greater combustion stability as compared to other injection and spark strategies.
Technical Paper

Development of Fast Idle Catalyst Light-Off Strategy for Gasoline Compression Ignition Engine - Part 1

2020-04-14
2020-01-0316
The present investigation pertains to the development of fast idle catalyst light-off strategy for a light duty gasoline compression ignition (GCI) engine. The engine cold start fast idle operation poses a problem of increased criteria emissions if the catalyst is not activated during the warm up period. Therefore, a control strategy is proposed here to minimize the criteria pollutants during the fast idle phase via enabling fast catalyst light off in a GCI engine and relying on the spark ignition of a globally stoichiometric fuel air mixture. The engine has unique design features such as certain geometry configuration between spark plug and fuel injector arrangement, and the location of spark plug in a high compression ratio (CR) diesel-like combustion chamber. The experiments were performed in a single cylinder GCI engine at cold start fast idle conditions using certification gasoline fuel (RON 91).
Technical Paper

Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion with Naphtha Fuel

2013-10-14
2013-01-2701
Recent research [21] has shown that the compression ignition concept where very low cetane fuels (RON between 70 and 85) are run in compression ignition (CI) mode has several advantages. The engine will be at least as efficient and clean as the current diesel engines but will have a less complicated after-treatment system. The optimum fuel will be less processed and therefore simpler to make compared to current gasoline or diesel fuels. Naphtha, which is a product of the initial distillation of petroleum, is one such fuel. It provides a path to mitigate the global demand imbalance between heavier and lighter fuels that is otherwise projected. Since naphtha requires much less processing in the refinery than either gasoline or diesel [23], there is an additional benefit in terms of well-to-wheel CO2 emissions and overall energy consumed. Partially premixed charge compression ignition combustion with such a low cetane fuel has usually been investigated with a diesel engine base.
Technical Paper

Optimizing Spark Assisted GCI Combustion with the Compression Ratio and Internal Exhaust Gas Recirculation (I-EGR) Strategies

2023-04-11
2023-01-0226
The combustion instability at low loads is one of the key technology risks that needs to be addressed with the development of gasoline compression ignition (GCI) engine. The misfires and partial burns due to combustion instability leads to excessive hydrocarbon (HC) and carbon monoxide (CO) emissions. This study aims to improve the combustion robustness and reduce the emissions at low loads. The GCI engine used in this study has unique hardware features of a spark plug placed adjacent to the centrally mounted gasoline direct injector and a shallow pent roof combustion chamber coupled with a bowl in piston geometry. The engine experiments were performed in a single cylinder GCI engine at 3 bar indicated mean effective pressure (IMEP) and 1500 rpm for certified gasoline with research octane number (RON) = 91.
Technical Paper

Experimental Investigations of Methane-Hydrogen Blended Combustion in a Heavy-Duty Optical Diesel Engine Converted to Spark Ignition Operation

2023-04-11
2023-01-0289
The global need for de-carbonization and stringent emission regulations are pushing the current engine research toward alternative fuels. Previous studies have shown that the uHC, CO, and CO2 emissions are greatly reduced and brake thermal efficiency increases with an increase in hydrogen concentration in methane-hydrogen blends for the richer mixture compositions. However, the combustion suffers from high NOx emissions. While these trends are well established, there is limited information on a detailed optical study on the effect of air-excess ratio for different methane-hydrogen mixtures. In the present study, experimental investigations of different methane-hydrogen blends between 0 and 100% hydrogen concentration by volume for the air-excess ratio of 1, 1.4, 1.8, and 2.2 were conducted in a heavy-duty optical diesel engine converted to spark-ignition operation. The engine was equipped with a flat-shaped optical piston to allow bottom-view imaging of the combustion chamber.
Technical Paper

Compression Ignition of Low Octane Gasoline under Partially Premixed Combustion Mode

2018-09-10
2018-01-1797
Partially premixed combustion (PPC) is an operating mode that lies between the conventional compression ignition (CI) mode and homogeneous charge compression ignition (HCCI) mode. The combustion in this mixed mode is complex as it is neither diffusion-controlled (CI mode) nor governed solely by chemical kinetics (HCCI mode). In this study, CFD simulations were performed to evaluate flame index, which distinguishes between zones having a premixed flame and non-premixed flame. Experiments performed in the optical engine supplied data to validate the model. In order to realize PPC, the start of injection (SOI) was fixed at −40 CAD (aTDC) so that a required ignition delay is created to premix air/fuel mixture. The reference operating point was selected to be with 3 bar IMEP and 1200 rpm. Naphtha with a RON of 77 and its corresponding PRF surrogate were tested. The simulations captured the general trends observed in the experiments well.
Technical Paper

2-Stroke Engine Options for Automotive Use: A Fundamental Comparison of Different Potential Scavenging Arrangements for Medium-Duty Truck Applications

2019-01-15
2019-01-0071
The work presented here seeks to compare different means of providing scavenging systems for an automotive 2-stroke engine. It follows on from previous work solely investigating uniflow scavenging systems, and aims to provide context for the results discovered there as well as to assess the benefits of a new scavenging system: the reverse-uniflow sleeve-valve. For the study the general performance of the engine was taken to be suitable to power a medium-duty truck, and all of the concepts discussed here were compared in terms of indicated fuel consumption for the same cylinder swept volume using a one-dimensional engine simulation package. In order to investigate the sleeve-valve designs layout drawings and analysis of the Rolls-Royce Crecy-type sleeve had to be undertaken.
Technical Paper

Octane-on-Demand as an Enabler for Highly Efficient Spark Ignition Engines and Greenhouse Gas Emissions Improvement

2015-04-14
2015-01-1264
This paper explores the potential for reducing transport-related greenhouse gas (GHG) emissions by introducing high-efficiency spark-ignition engines with a dual-fuel injection system to customize the octane of the fuels based on real-time engine requirements. It is assumed that a vehicle was equipped with two fuel tanks and two injection systems; one port fuel injection and one direct injection line separately. Each tank carried low octane and high octane fuel so that real-time octane blending was occurred in the combustion chamber when needed (Octane On-Demand: OOD). A refinery naphtha was selected for low octane fuel (RON=61), because of its similarity to gasoline properties but a less processed, easier to produce without changing a refinery configuration. Three oxygenates were used for high octane knock-resistant fuels in a direct injection line: methanol, MTBE, and ETBE.
Technical Paper

Parametric Study to Optimize Gasoline Compression Ignition Operation under Medium Load-Conditions

2021-04-06
2021-01-0460
Gasoline compression ignition (GCI) pertains to high efficiency lean burn compression ignition with gasoline fuels, where ignition is controlled by mixture’s auto-ignition chemistry as well as local mixture strength. The presented GCI combustion strategy is based on a multi-mode combustion strategy at various operating conditions. This study presents a part of work on the development of an optimum combustion strategy at medium loading condition for commercial gasoline fuel with research octane number (RON) = 91. The single cylinder engine with a compression ratio (CR) = 16 features a centrally mounted multi-hole injector with a spark plug at a distance from the injector under shallow pent-roof combustion chamber design. The design of combustion chamber and piston was previously optimized based on CFD numerical analysis.
Journal Article

Study on the Pre-Chamber Fueling Ratio Effect on the Main Chamber Combustion Using Simultaneous PLIF and OH* Chemiluminescence Imaging

2020-09-15
2020-01-2024
Pre-chamber combustion (PCC) enables leaner air-fuel ratio operation by improving its ignitability and extending flammability limit, and consequently, offers better thermal efficiency than conventional spark ignition operation. The geometry and fuel concentration of the pre-chamber (PC) is one of the major parameters that affect overall performance. To understand the dynamics of the PCC in practical engine conditions, this study focused on (i) correlation of the events in the main chamber (MC) with the measured in-cylinder pressure traces and, (ii) the effect of fuel concentration on the MC combustion characteristics using laser diagnostics. We performed simultaneous acetone planar laser-induced fluorescence (PLIF) from the side, and OH* chemiluminescence imaging from the bottom in a heavy-duty optical engine. Two different PC Fueling Ratios (PCFR, the ratio of PC fuel to the total fuel), 7%, and 13%, were investigated.
Technical Paper

The Effects of Piston Shape in a Narrow-Throat Pre-Chamber Engine

2022-08-30
2022-01-1059
The current work utilizes computational fluid dynamics (CFD) simulations to assess the effects of different piston geometries in an active-type pre-chamber combustion engine fueled with methane. Previous works identified that the interaction of the jets with the main chamber flow and piston wall are key aspects for the local turbulent flame speed and overall burning duration. The combustion process is simulated with the G-equation model for flame propagation combined with the MZ-WSR model to determine the post-flame composition and to predict possible auto-ignition of the reactant mixture. Four setups were considered: two bowl-shaped and one flat piston, and one additional case of the flat piston with jets at wider jet angles to the cylinder axis. The results show that premature jet-wall interaction impacts the main chamber pressure build-up, turbulence, and burn rate.
X