Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Comparing Unburned Fuel Emission from a Pre-chamber Engine Operating on Alcohol Fuels using FID and FTIR Analyzers

2022-08-30
2022-01-1094
Typical automotive emission testing systems usually employ Flame Ionization Detection (FID) analyzers to measure unburned fuel species in the exhaust, but the technique is not suitable for engines operating on alcohol fuels. The FID method is not sensitive to measuring unburned alcohol fuels due to the presence of oxygen bonds in the fuel molecule. Other techniques, such as Fourier Transform Infrared (FTIR), can provide accurate unburned fuel measurements with alcohol fuel. However, these techniques are expensive and are less accessible compared to FID analyzers. In this study, the unburned fuel emissions from the engine exhaust were measured simultaneously with FID and FTIR analyzers, with the engine operating on pure alcohols, which are methanol, ethanol, and n-butanol. While most previous work focuses on stoichiometric air-fuel mixtures, a wide range of lean operating conditions between global-λ 1.6 to 2.8 will be tested in this study.
Technical Paper

A Numerical Study on the Effect of a Pre-Chamber Initiated Turbulent Jet on Main Chamber Combustion

2022-03-29
2022-01-0469
To elucidate the complex characteristics of pre-chamber combustion engines, the interaction of the hot gas jets initiated by an active narrow throated pre-chamber with lean premixed CH4/air in a heavy-duty engine was studied computationally. A twelve-hole KAUST proprietary pre-chamber geometry was investigated using CONVERGE software. The KAUST pre-chamber has an upper conical part with the spark plug, and fuel injector, followed by a straight narrow region called the throat and nozzles connecting the chambers. The simulations were run for an entire cycle, starting at the previous cycle's exhaust valve opening (EVO). The SAGE combustion model was used with the chemistry modeled using a reduced methane oxidation mechanism based on GRI Mech 3.0, which was validated against in-house OH chemiluminescence data from the optical engine experiments.
Technical Paper

A Computational Investigation of Fuel Enrichment in the Pre-Chamber on the Ignition of the Main Chamber Charge

2021-04-06
2021-01-0523
Pre-chamber combustion (PCC) engines allow extending the lean limit of operation compared to common SI engines, thus being a candidate concept for the future clean transportation targets. To understand the fundamental mechanisms of the main chamber charge ignition in PCC engines, the effects of the composition in the pre-chamber were investigated numerically. A well-stirred reactor combustion model coupled with a methane oxidation mechanism reduced from GRI 3.0 was used. An open-cycle simulation was run with initialization at exhaust valve opening (EVO). For posterior simulations, the initial flow field was attained by mapping the field variables obtained from the full cycle simulation. The entire simulation domain (pre-chamber and main chamber) global excess air ratio (λ) was set to 1.3.
X