Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Evaluation of Modeling Approaches for NOx Formation in a Common-Rail DI Diesel Engine within the Framework of Representative Interactive Flamelets (RIF)

2008-04-14
2008-01-0971
Representative Interactive Flamelets (RIF) have proven successful in predicting Diesel engine combustion. The RIF concept is based on the assumption that chemistry is fast compared to the smallest turbulent time scales, associated with the turnover time of a Kolmogorov eddy. The assumption of fast chemistry may become questionable with respect to the prediction of pollutant formation; the formation of NOx, for example, is a rather slow process. For this reason, three different approaches to account for NOx emissions within the flamelet approach are presented and discussed in this study. This includes taking the pollutant mass fractions directly from the flamelet equations, a technique based on a three-dimensional transport equation as well as the extended Zeldovich mechanism. Combustion and pollutant emissions in a Common-Rail DI Diesel engine are numerically investigated using the RIF concept. Special emphasis is put on NOx emissions.
Technical Paper

Effect of Ethanol and n-Butanol on Standard Gasoline Regarding Laminar Burning Velocities

2010-05-05
2010-01-1452
Ethanol is frequently used as a blending component in standard gasoline, with blend rates up to 10%vol liq . n-Butanol has received recent interest as an alternative fuel instead of ethanol for use in spark ignition engines. Similar to ethanol, n-butanol can be produced via the fermentation of sugars, starches, and lignocelluloses obtained from agricultural feedstock. It is of great interest to modern engine development to understand the effect of ethanol and n-butanol as blending components on the laminar burning velocity of standard gasoline. The laminar burning velocity is one key parameter for the numerical simulation of gasoline engine combustion processes. Tested fuel components are ethanol, n-butanol, and standard marked gasoline without any oxygen content. Fuel blends consist of standard-marked gasoline containing ethanol and butanol. The maximum blend rate of oxygenates is 10%vol liq . Experiments were done at different equivalence ratios between 0.7 and 1.3.
X