Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

Impact of Fuel Properties on Advanced Combustion Performance in a Diesel Bench Engine and Demonstrator Vehicle

2010-04-12
2010-01-0334
Six diesel, kerosene, gasoline-like, and naphtha fuels have been tested in a single cylinder diesel engine and a demonstrator vehicle, both equipped with similar engine technology and optimized for advanced combustion performance. This study was completed in order to investigate the potential to reduce engine-out emissions while maintaining engine efficiency and noise levels through changes in both engine hardware and fuel properties. The fuels investigated in this study were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions and performance. The optimized bench engine used in this study included engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under advanced combustion conditions, at least under some speed and load conditions.
Technical Paper

Modelling a Gasoline Compression Ignition (GCI) Engine Concept

2014-04-01
2014-01-1305
Future engines and vehicles will be required to reduce both regulated and CO2 emissions. To achieve this performance, they will be configured with advanced hardware and engine control technology that will enable their operation on a broader range of fuel properties than today. Previous work has shown that an advanced compression ignition bench engine can operate successfully on a European market gasoline over a range of speed/load conditions while achieving diesel-like engine efficiency and acceptable regulated emissions and noise levels. Stable Gasoline CI (GCI) combustion using a European market gasoline was achieved at high to medium engine loads but combustion at lower loads was very sensitive to EGR rates, leading to longer ignition delays and a steep cylinder pressure rise.
X