Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

Powder Metal Parts for Automotive Applications–Part III

1989-02-01
890409
The constant challenge for automotive engineers to design vehicles with greater reliability at lower cost has brought powder metallurgy (P/M) to the foreground. This technology provides parts to or near net shape and results in savings of material, energy, capital equipment and floor space. This paper is an extension of SAE reports 850458 and 870133 and describes automotive powder metal components not previously identified. It should help engineers find cost effective applications early in the design stage so that P/M technology can be efficiently adopted. In addition, recent important technological developments in the P/M field applicable to automotive parts are highlighted. In particular, increased reliability achieved through SPC is stressed. A novel blending process is described whereby the alloying ingredients are “glued” to iron powder particles resulting in an increase in P/M quality through improved homogeneity.
X