Refine Your Search

Topic

Search Results

Journal Article

NLMPC for Real Time Path Following and Collision Avoidance

2015-04-14
2015-01-0313
This paper presents a nonlinear control approach to achieve good performances in vehicle path following and collision avoidance when the vehicle is driving under cruise highway conditions. Nonlinear model predictive control (NLMPC) is adopted to achieve online trajectory control based on a simplified vehicle model. GMRES/Continuation algorithm is used to solve the online optimization problem. Simulations show that the proposed controller is capable of tracking the desired path as well as avoiding the obstacles.
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Journal Article

Friction Estimation at Tire-Ground Contact

2015-04-14
2015-01-1594
The friction estimation at the tire-ground contact is crucial for the active safety of vehicles. Friction estimation is a key problem of vehicle dynamics and the ultimate solution is still unknown. However the proposed approach, based on a simple idea and on a simple hardware, provides an actual solution. The idea is to compare the tire characteristic at a given friction (nominal characteristic) with the actual characteristic that the tire has while running. The comparison among these two characteristics (the nominal one and the actual one) gives the desired friction coefficient. The friction coefficient is expressed in vector form and a number of running parameters are identified. The mentioned comparison is an efficient but complex algorithm based on a mathematical formulation of the tire characteristic. The actual tire characteristic is somehow measured in real time by a relatively simple smart wheel which is able to detect the three forces and the three moments acting at the hub.
Technical Paper

Torso Improvements in Child Dummies Used for Certification Tests in Europe

1997-11-12
973315
Child dummies used in certification dynamic tests have not been improved since their marketing and their approval as European regulation dummies. Their main shortcoming lies in a too high and therefore unrealistic stiffness of the torso front part. The paper addresses a study carried out in the aim of solving this problem. It includes two parts: in a first section, the changes brought to the dummy torso and intended to improve its biofidelity and to reduce stiffness drastically are described. In order to reach such an objective, the lower part of the upper torso was remodelled; the pelvis profile was redefined and the geometrical and mechanical characteristics of the foam used for the abdominal insert were changed. The results obtained using two transducers installed in the abdominal section are then presented. The measurement principle of the first transducer consists in a pressure measurement, and the principle of the second one in a load measurement.
Technical Paper

Dynamic Tests of Racing Seats and Simulation with Vedyac Code

1998-11-16
983059
Dynamic tests have been performed on carbon fiber racing seats following the FIA regulations. The tests have shown, in rear impact tests, a relatively strong rebound leading to large forward bending of neck, and, in side impact tests, very large lateral displacement of the head, the latter protruding dangerously towards hard portions of the car structure. Stiffening the seat back by steel struts results in reducing strongly both the motion and the acceleration of the head. Simulations of the dynamics of the tests have been done with multi-body models, including the Hybrid III dummy and seat deflection, by means of the program VEDYAC. It has been found that computer simulation can predict very accurately the result of a test, provided the numerical models have been carefully calibrated to match the dummy tolerance bands. Once they have been calibrated and validated with a number of tests, the computer models can be very useful to extend the test results to different test conditions.
Technical Paper

Influence of Both Catalyst Geometry and Fuel Sulfur Content on NOX Adsorber Poisoning

2001-05-07
2001-01-1934
NOx adsorbers are very sensitive to sulfur poisoning and future fuel standards are unlikely to be sufficient to prevent the system from requiring periodic desulfation procedures. The purpose of this paper is to present the effects of low fuel sulfur content such as 50 ppm and 10 ppm on the NOx adsorber efficiency for a diesel application. Through this study, the influence of the substrate cell geometry has also been assessed. The use of a 10 ppm sulfur fuel is not enough to maintain, at a high level, the NOx adsorber performance during a 40,000 km aging test. The desulfation criterion (efficiency loss of 30%) is reached after the first 16,000 km. However, the desulfation operation is not enough to recover the initial catalyst performance and the poisoning velocity increases as the catalyst ages. The hexagonal cell substrate catalyst is less sensitive to sulfur poisoning than a square cell substrate catalyst so that its desulfation frequency is much lower.
Technical Paper

Euroncap~Views and suggestions for improvements

2001-06-04
2001-06-0087
Since its creation in 1996, Euroncap evaluated more than 80 cars, ranging from small and city cars, to larger vehicles such as executive cars and people carriers (MPVs). The testing protocol comprises 3 types of tests: a frontal offset test against a deformable barrier, a 90° lateral impact with a moving deformable barrier, and - since March 2000 - a pole side impact. In addition a set of subsystem tests with impactors on the bonnet and the front face of the car are conducted to assess the pedestrian protection. The aim of this paper is to review the testing and assessment protocols and to compare them with those used in other NCAP systems in the USA, Australia, Japan and Europe. In particular, important Euroncap issues such as the stiffness of heavier vehicles that could be increased in the future, and the nature and weight of the modifiers are discussed. Ways to improve the system are suggested in relation with real-world accident data.
Technical Paper

Design and Construction of a Test Rig for Assessing Tyre Characteristics at Rollover

2002-07-09
2002-01-2077
The paper presents a new test rig (named RuotaVia) composed basically by a drum (2,6 m diameter), providing a running contact surface for vehicle wheels. A number of measurements on either full vehicles or vehicle sub-systems (single suspension system or single tyre) can be performed. Tire characteristics influencing rollover can be assessed. The steady-state maximum loads are as follows: Radial: 100kN, tangential: 100kN, lateral (axial with respect to the drum): 100kN. The superstructure carrying a measuring hub can excite the wheel under test up to 20 Hz in lateral and vertical directions. The steer angle range is ± 25 deg, the camber range is ± 80 deg. The minimum eigenfrequency of the drum is higher than 90 Hz and its maximum tangential speed is 440 km/h.
Technical Paper

Ultra Light Compact Economical Vehicle Concept

2002-07-09
2002-01-2071
State of the art demonstrates that weight of vehicle increases with length of car body. Integration of powertrain in mid rear underfloor location enables to shorten car body by more than 0,5m and to save partially heavy longitudinal members. Underfloor integration of power train induces higher stance floor for more conviviality of passengers visibility. Safety factors are improved by lowering gravity centre, better repartition of front / rear masses during braking, easier management of crash by straighter and higher front longitudinal members and free front space. Space frame architecture simplifies light weight technologies application by using 2D bended aluminum profiles. Low investment is ensured by minimising castings application to suspension attachments and interlinking upperbody to underbody. Floor and external panels are designed for aluminum sheet stampings.
Technical Paper

Modeling of Pressure Wave Reflection from Open-Ends in I.C.E. Duct Systems

2010-04-12
2010-01-1051
In the most elementary treatment of plane-wave reflection at the open end of a duct system, it is often assumed that the ends are pressure nodes. This implies that pressure is assumed as a constant at the open end termination and that steady flow boundary condition is supposed as instantaneously established. While this simplifying assumption seems reasonable, it does not consider any radiation of acoustic energy from the duct into the surrounding free space; hence, an error in the estimation of the effects of the flow on the acoustical response of an open-end duct occurs. If radiation is accounted, a complicated three-dimensional wave pattern near the duct end is established, which tends to readjust the exit pressure to its steady-flow level. This adjustment process is continually modified by further incident waves, so that the effective instantaneous boundary conditions which determine the reflected waves depend on the flow history.
Technical Paper

Electronic System Design for Future Passenger Restraint Systems

1996-02-01
960500
In comparison to a standard dual airbag system as of today, future restraint systems will introduce a variety of new and additional actuator devices which help to improve the overall restraint performance. Furthermore, sensors and sensor-subsystems will be added to improve and extend the range of crash detection and to enable an automatic adaptation of the restraint system to a given status of the vehicle, its occupants and the crash severity. The implementation and control of these new functions require an appropriate design of the overall restraint system electronics. Two approaches are described in greater detail: the modular design based on functional building blocks, and the implementation as a distributed system including communication links.
Technical Paper

Multi-Physics Simulations of Ice Shedding from Wind Turbines

2023-06-15
2023-01-1479
Wind turbines in cold climates are likely to suffer from icing events, deteriorating the aerodynamic performances of the blades and decreasing their power output. Continuous ice accretion causes an increase in the ice mass and, consequently, in the centrifugal force to which the ice shape is subjected. This can result in the shedding of chunks of ice, which can jeopardize the aeroelastic properties of the blade and, most importantly, the safety of the surrounding people and of the wind turbine structure itself. In this work, ice shedding analysis is performed on a quasi-3D, multi-step ice geometry accreted on the NREL 5MW reference wind turbine. A preliminary investigation is performed by including the presence of an ice protection system to decrease the adhesion surface of the ice on the blade. A reference test case with a simple geometry is used as verification for the correct implementation of the procedure.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Technical Paper

A Three-Dimensional Level-Set Front Tracking Technique for Automatic Multi-Step Simulations of In-Flight Ice Accretion

2023-06-15
2023-01-1467
This paper presents a novel fully-automatic remeshing procedure, based on the level-set method and Delaunay triangulation, to model three-dimensional boundary problems and generate a new conformal body-fitted mesh. The proposed methodology is applied to long-term in-flight ice accretion, which is characterized by the formation of extremely irregular ice shapes. Since ice accretion is coupled with the aerodynamic flow field, a multi-step procedure is implemented. The total icing exposure time is subdivided into smaller time steps, and at each time step a three-dimensional body-fitted mesh, suitable for the computation of the aerodynamic flow field around the updated geometry, is generated automatically. The methodology proposed can effectively deal with front intersections, as shown with a manufactured example.
Technical Paper

Investigation of the Influence of Aero-Thermal Non-equilibrium Conditions of an SLD Cloud on Airfoil Icing

2023-06-15
2023-01-1406
This study examines the impact of slip in aero-thermal conditions of supercooled large droplets (SLD) produced in an Icing Wind Tunnel (IWT) on the ice accretion characteristics. The study identifies potential biases in the SLD model development based on IWT data and numerical predictions that assume the SLD to be in aerothermal equilibrium with the IWT airflow. To obtain realistic temperature and velocity data for each droplet size class in the test section of the Braunschweig Icing Wind Tunnel (BIWT), a Lagrangian droplet tracking solver was used within a Monte Carlo framework. Results showed that SLDs experience considerable slips in velocity and temperature due to their higher inertia and short residence time in the Braunschweig IWT. Large droplets were found to be warmer and slower than the flow in the test section, with larger droplets experiencing larger aerothermal slips.
Technical Paper

CFD Modeling of Impinging Sprays Under Large Two-Stroke Marine Engine-Like Conditions

2022-03-29
2022-01-0493
To improve the combustion and emission characteristics of the large-bore marine engines, the spray is usually designed as an inter-spray impingement to promote the fuel-air mixing process, which implies frequent droplet collisions. Properly describing the collision dynamics of liquid droplets has been of interest in the field of spray modeling for marine engine applications. In this context, this work attempts to develop an accurate and efficient methodology for modeling impinging sprays under engine-like conditions. Experimental validations in terms of spray penetration and morphology are initially carried out at different operating conditions considering the parametric variations of ambient temperature and pressure, where the measurements are performed on a large-scale constant volume chamber with two symmetrical injectors.
Technical Paper

Impact of Sulphur on the NOx Trap Catalyst Activity-Poisoning and Regeneration Behaviour

2000-06-19
2000-01-1874
This presented paper deals with NOx trap sulphur poisoning and its regeneration. Sulphur poisoning has been studied with different SO2 gas concentrations under laboratory and engine test bench conditions. The sulphur poisoning studies have shown that the different NOx-traps available in the market have different behaviours toward SO2 poisoning and are all very sensitive to it. The results outline a non linear relationship of the NOx trap sulphur poisoning as a function of SO2 concentration. For instance, engine bench tests show that with a 50 and a 110ppm sulphur containing gasoline, a decrease of 50% in the NOx-trap storage capacity is respectively observed after 20 and 15 hours. With a gasoline containing 20ppm of sulphur, the same deactivation level is observed after 90 hours.
Technical Paper

Novel Framework for the Robust Optimization of the Heat Flux Distribution for an Electro-Thermal Ice Protection System and Airfoil Performance Analysis

2023-06-15
2023-01-1392
We present a framework for the robust optimization of the heat flux distribution for an anti-ice electro-thermal ice protection system (AI-ETIPS) and iced airfoil performance analysis under uncertain conditions. The considered uncertainty regards a lack of knowledge concerning the characteristics of the cloud i.e. the liquid water content and the median volume diameter of water droplets, and the accuracy of measuring devices i.e., the static temperature probe, uncertain parameters are modeled as uniform random variables. A forward uncertainty propagation analysis is carried out using a Monte Carlo approach. The optimization framework relies on a gradient-free algorithm (Mesh Adaptive Direct Search) and three different problem formulations are considered in this work. Two bi-objective deterministic optimizations aim to minimize power consumption and either minimize ice formations or the iced airfoil drag coefficient.
Technical Paper

ANNIE, a Tool for Integrating Ergonomics in the Design of Car Interiors

1999-09-28
1999-01-3372
In the ANNIE project - Applications of Neural Networks to Integrated Ergonomics - BE96-3433, a tool for integrating ergonomics into the design process is developed. This paper presents some features in the current ANNIE as applied to the design of car interiors. A variant of the ERGOMan mannequin with vision is controlled by a hybrid system for neuro-fuzzy simulation. It is trained by using an Elite system for registration of movements. An example of a trajectory generated by the system is shown. A fuzzy model is used for comfort evaluation. An experiment was performed to test its feasibility and it showed very promising results.
Technical Paper

Robust Design of Acoustic Treatments for Powertrain Noise Radiation

2018-06-13
2018-01-1486
The reduction of the emitted noise from vehicles is a primary issue for automotive OEM’s due to the constant evolution of the noise regulations. As the noise generated by the powertrain remains one of the major noise sources at low/mid vehicle velocities, focus is set on efficient methods to control this source. Acoustic treatments and covers, made of multi-layered trimmed panels, are frequently selected to control the radiated sound and its directivity. In this context, numerical acoustic simulation is an attractive approach as efficient methodologies are available to study the acoustic radiation of powertrain units in working conditions (up to 6500 RPM nd frequencies up to 4 kHz). Moreover, handling acoustically-treated covers in such simulations has a low impact on the computational cost.
X