Refine Your Search

Topic

Search Results

Technical Paper

An Interval Analysis and Optimization Method for Generated Axial Force of Automotive Drive Shaft Systems

2020-04-14
2020-01-0918
To study the generated axial force (GAF) of the drive shaft system more accurately and effectively, this paper introduces the interval uncertainty into the research focusing on the GAF. Firstly, an interval uncertainty model for calculating the GAF is proposed based on the Chebyshev polynomials and an analytical model of the GAF. The input torque, the articulation angle, the rotation angle of the drive shaft system, the pitch circle radius (PCR) of the tripod joint and the friction coefficient are regarded as interval variables. Secondly, the upper and lower bounds of the proposed GAF model under interval uncertainty parameters are calculated quickly with the vertex method. Then the interval uncertainty optimization of the GAF under uncertainty parameters is performed. The upper bound of the response interval of the GAF is taken as the optimization object.
Technical Paper

A Study on Sliding Mode Control for Active Suspension System

2020-04-14
2020-01-1084
Sliding mode control with a disturbance observer (SMC-DO) is proposed for suppressing the sprung mass vibration in a quarter-car with double-wishbone active suspension system (ASS), which contains the geometry structure of the upper and lower control arms. The governing equations of double-wishbone ASS are obtained by the balance-force analysis of the sprung mass in ASS. Considering uncertainties in damping, stiffness, and external disturbance acting on the sprung mass, we design a disturbance observer based on a sliding mode control (SMC) to estimate these uncertainties under the unknown road excitation. By the Lyapunov minimax approach, the uniform boundedness and the uniform ultimate boundedness of ASS with the proposed control are rigorously proved. Through co-simulation of ADAMS software and MATLAB/Simulink software, the sprung mass acceleration of ASS can be obtained with and without the proposed control.
Technical Paper

Investigation of Vehicle Handling and Ride Comfort Oriented Cooperative Optimization

2010-04-12
2010-01-0722
The characteristics of suspension elastic elements (i.e., spring, damper and anti-roll bar) are directly related to the handling and ride comfort performances, how to tune the characteristics of suspensions' elastic elements is always a big issue in developing the chassis of a vehicle. In this paper, a multi-body dynamics model of a passenger car within MSC.ADAMS® is integrated with iSight FD®, an optimization tool, to carry out a multi-objective optimization for improving the behavior of vehicle handling and ride comfort. The characteristics of suspension elastic elements (i.e., spring, damper and anti-roll bar) are considered as design variables. For handling, the objectives are defined by the measurements from multi-body dynamics simulation of typical double lane change according to ISO3888 standard. For ride comfort, the frequency-weighted RMS (Root Mean Square) value of vertical acceleration of the front seat rail according to ISO2631 standard is set as the objective.
Technical Paper

Study on Steering Angle Input during the Automated Lane Change of Electric Vehicle

2017-09-23
2017-01-1962
The trajectory planning and the accurate path tracking are the two key technologies to realize the intelligent driving. The research of the steering wheel angle plays an important role in the path tracking. The purpose of this study is to optimize the steering wheel angle input during the automated lane changing. A dynamic programming approach to trajectory planning is proposed in this study, which is expected to not only achieve a quick reaction to the changing driving environment, but also optimize the balance between vehicle performance and driving efficiency. First of all, the lane changing trajectory is planned based on the positive and negative trapezoidal lateral acceleration method. In addition, the multi-objective optimization function is built which includes such indexes: lateral acceleration, lateral acceleration rate, yaw rate, lane changing time and lane changing distance.
Technical Paper

Design of Muffler in Reducing Hiss Noise of Turbocharged Vehicles

2022-03-29
2022-01-0315
The application of turbochargers in fuel vehicles brings high-frequency noise, which seriously affects the vehicle's ride comfort. The hiss noise of a turbocharged car is improved in this paper. Firstly, under different operating conditions and whether the air intake system is wrapped, the noise in the vehicle cabin and the driver's right ear is tested, and the noise sources and noise characteristics are identified. Then, the acoustic calculation model of the muffler is established, and the transmission loss (TL) of the original muffler behind the turbocharger (MBT) is calculated. The TL of the muffler is measured by the double-load impedance tube method. The finite element calculation model is verified by comparing the TL of muffler calculated with tested. Thirdly, the MBT is redesigned. The improved muffler significantly improves the performance of eliminating high-frequency noise, and its TL beyond 20 dB is expanded to the band of 1600 ~ 3500 Hz.
Technical Paper

Experimental Study on Hydraulic Pressure Feedforward and Feedback PID Control of I-EHB System with Friction Disturbance

2021-04-06
2021-01-0979
This paper designs the important components and structure of the integrated electro-hydraulic brake system (I-EHB). Firstly, the simplified linear system is modeled, and the transfer function without considering the nonlinear disturbance such as system friction is derived, and the correctness of the linear system is preliminarily verified by AMESim. Then set up the I-EHB system test bench, and use the Stribeck friction model to identify the friction torque parameters in the static and kinetic friction stages of the system to obtain a more accurate friction model. Finally, based on the I-EHB system model of friction disturbance, a pressure-speed-current three-loop cascade PID controller is designed, and a feedforward controller based on the system model is added to form the control structure of “pressure feedforward compensation + pressure-speed-current closed-loop cascade PID”.
Technical Paper

Experimental and Numerical Study of Rollover Crashworthiness of a Coach Body Section

2012-09-24
2012-01-1900
The good mobility and large carrying capacity promote the popularity of intercity coach in mass transit, especially in the long distance passenger transport nowadays. However, accidents related to coach and bus usually involve large casualties. Higher risk of fatalities is exhibited in rollover than the other coach accident types. In order to protect the occupants when a rollover accident occurs, coach structure must have sufficient strength to resist the impact loads. This paper presents a rollover test of an intercity coach body section using both numerical simulation and experimental testing to investigate its rollover crashworthiness in accordance with ECE R66. A full scale coach body section is manufactured and a tilting bench is designed and fabricated. Displacement transducers and accelerometer are equipped to record the time history of superstructure deformation and impact acceleration. And the FE model was developed accordingly.
Technical Paper

China to Explore and Set its Independent Fuel Standards – Application Research on MAZ Fuel Additive

2004-10-25
2004-01-2938
MAZ is a fuel additive designed to reduce tailpipe emissions. It was developed by Magnum Environmental Technologies, Inc., and is covered by US Patent Number 6319294. The patent for MAZ is protected in about 120 countries around the world. Its main components are a combination of nitroparaffins. MAZ exhibits high heat value, excellent carbon deposit prevention, lubricity and high chemical reactivity that results in the development of free radicals in the course of the combustion process. This, in turn, initiates a chain reaction providing more complete combustion. This results in lower tail pipe emissions and fuel economy. Further, MAZ has low water solubility, is biodegradable and contains no metallic substances making it environmentally friendly. Aside from tests currently underway in the USA, Singapore and Indonesia, China has completed applications testing with leading authorities.
Technical Paper

Frequency Conversion Controlled Vapor Recovery System by Temperature and Flow Signals: Model Design and Parameters Optimization

2013-09-24
2013-01-2348
Current gasoline-gas vapor recovery system is incomplete, for it cannot adjust the vapor-liquid ratio automatically due to the change of working temperature. To solve this problem, this paper intends to design a new system and optimize its parameters. In this research, variables control method is used for tests while linear regression is used for data processing. This new system moves proportion valve away and adds a DSP control module, a frequency conversion device, and a temperature sensor. With this research, it is clearly reviewed that the vapor-liquid ratio should remains 1.0 from 0 °C to 20 °C as its working temperature, be changed into 1.1 from 20 °C to 25 °C, be changed into 1.2 from 25 °C to 30 °C, and be changed into 1.3 when the working temperature is above 30 °C.
Technical Paper

Analysis and Experimental Research on Whine Noise of the Engine Balance Shaft Gear System

2023-05-08
2023-01-1152
An Inline 4-cylinder engine is equipped with second-order balance shafts. When the engine is running under no-load acceleration conditions, the gear system of the balance shaft generated whine noise. In this paper, an analysis and experiment method for reducing the whine noise is presented. First, a flexible multi-body dynamic model of the engine is established, which includes shaft and casing deformation, micro-modification of the gears. Taking the measured cylinder pressure as input, the load on each gear of balance shaft gear system is calculated. In addition, the influence of tooth surface micro-modification on the meshed noise was analyzed. The results show that the dynamic meshing force between the crank gear and the shim gear is large under the original tooth surface micro-modification parameters, which is the main reason of the whine noise.
Technical Paper

Research on Brake Comfort Based on Brake-by-Wire System Control

2022-03-29
2022-01-0912
The vehicle will produce certain shock and vibration during the braking process, which will affect the driving experience of the driver. Aiming at the problems of pitch vibration, longitudinal vibration and shock during the braking process, this paper proposes a planning and following control method for target longitudinal acceleration in post-braking phase, and designs control trigger strategies. Target longitudinal acceleration planning takes minimizing longitudinal shock as the design goal. The following control takes the brake pressure as the control object, and adopts the “feedforward +PID feedback” method to follow the target longitudinal acceleration. Besides, considering the safety of braking process, the trigger condition of control is designed which utilizes BP neural network method to judge whether the control has to be triggered. Based on Simulink software, the simulation model of straight-line braking is established.
Technical Paper

Two-Level LPV Model Based Sliding Mode Predictive Control with Actuator Input Delay for Vehicle Yaw Stability

2022-03-29
2022-01-0905
For the improvement of the vehicle yaw stability, this paper studies the control problem of the active front steering (AFS) system with actuator input delay. A novel sliding mode predictive control method to handle actuator input delay is proposed for the AFS system. Firstly, considering the nonlinearities of the vehicle system, a linear parameter varying vehicle system model with two-level structure is proposed to capture the vehicle dynamic behaviors. Secondly, to deal with the issues of actuator input delay and system constraints, a novel sliding mode predictive control method is put forward. In the process of controller design, a sliding mode control algorithm is employed for the improvement of the robustness of the control system, and then a model predictive control algorithm is employed to deal with system constraints.
Technical Paper

Mass Flow Rate Prediction of Electronic Expansion Valve Based on Improved Particle Swarm Optimization Back-Propagation Neural Network Algorithm

2022-03-29
2022-01-0181
Electronic expansion valve as a throttle element is widely used in heat pump systems and flow characteristics are its most important parameter. The flow characteristics of the electronic expansion valve (EXV) with a valve port diameter of 3mm are studied, when the refrigerant R134a is used as the working fluid. The main factors affecting the flow characteristics are researched by adopting the orthogonal experiment method and single factor control method, for example, inlet pressure, inlet temperature, outlet pressure and valve opening. The results show that the expansion valve opening degree has the greatest influence on mass flow rate. In view of the complicated phase change of the refrigerant passing through electronic expansion valve, it is difficult to model the flow characteristics accurately.
Technical Paper

Dynamic Modeling Method of Electric Vehicle Thermal Management System Based on Improved Moving Boundary Method

2022-03-29
2022-01-0183
The thermal management system, which is used to improve driving safety and thermal comfort, is one of the most important systems in electric vehicles. In recent years, researchers have coupled the heat pump system and the battery cooling system to effectively improve the heating COP (Coefficient of Performance). Therefore an accurate dynamic model of thermal management system plays a key role in investigating system performance and optimal control strategies. In this paper, an electric vehicle thermal management system based on four-way valve heat pump system is designed. The moving boundary method is improved by considering the unsteady flow of the external fluid, and then a 13-order dynamic model of the thermal management system is established. Firstly, the control equations of evaporator, condenser and chiller are derived according to the principle of conservation, and then a dynamic model of thermal management system is established in Simulink.
Technical Paper

Fatigue Life Prediction Method for Natural Rubber Material Based on Extreme Learning Machine

2022-03-29
2022-01-0258
Uniaxial fatigue tests of rubber dumbbell specimens under different mean and amplitude of strain are carried out. An Extreme Learning Machine (ELM) model optimized by Dragonfly Algorithm (DA) is proposed to predict the fatigue life of rubber based on measured rubber fatigue life data. Mean and amplitude of strain and measured rubber fatigue life are taken as input variables and output variables respectively in DA-ELM model. For comparison, genetic algorithm (GA) and particle swarm optimization (PSO) are used to optimize ELM parameters, and GA-ELM and PSO-ELM models are established. The comparison results show that DA-ELM model performs better in predicting the fatigue life of rubber with least dispersion. The coefficients of determination for the training set and test set are 99.47% and 99.12%, respectively. In addition, a life prediction model equivalent strain amplitude as damage parameter is introduced to further highlight the superiority of DA-ELM model.
Technical Paper

Research and Parameter Optimization on Ride Comfort and Road Friendliness of Interconnected Air Suspension for Commercial Vehicles

2021-04-06
2021-01-0316
In order to improve the ride comfort and road friendliness of heavy commercial vehicles, a lateral interconnected air suspension system is developed. Based on the theory of thermodynamics and vehicle dynamics, a Ten-degree-of-freedom vehicle dynamics model with lateral interconnected air suspension is established. Interconnected pipeline parameters’ influence on characteristics of air suspension system in whole vehicle are calculated and analyzed. Simulation results show that the stiffness of air suspension decreases gradually with the increase of interconnected pipeline diameter. The designed interconnected air spring experiments verify the simulation results. Simulation on vehicle dynamics models is carried out by building random road models with different roughness levels in MATLAB.
Technical Paper

A Research on Modeling and Pressure Control of Integrated Electro-Hydraulic Brake System

2021-04-06
2021-01-0130
A fourth-order mathematical model for I-EHB (integrated electro-hydraulic brake) system was derived from its mechanical and hydraulic subsystems. The model was linearized at equilibrium state and then was verified by AMESIM software. The friction model of the system was analyzed based on static friction and viscous friction. A bench test was designed to identify the parameters of friction model. As the I-EHB system worked at different braking conditions, a PID-based switching controller was designed to track the target servo cylinder pressure. Both simulations and experiments results showed that, the response time of pressure was less than 120ms, and there was no overshoot, which helped handling different braking conditions and improving the braking safety and comfort.
Technical Paper

A Control Strategy to Reduce Torque Oscillation of the Electric Power Steering System

2019-06-05
2019-01-1516
This paper proposes a new evaluation method of analyzing stability and design of a controller for an electric power steering (EPS) system. The main purpose of the EPS system’s control design is to ensure a comfortable driving experience of drivers, which mainly depends on the assist torque map. However, the high level of assist gain and its nonlinearity may cause oscillation, divergence and instability to the steering systems. Therefore, an EPS system needs to have an extra stability controller to eliminate the side effect of assist gain on system stability and attenuate the unpleasant vibration. In this paper, an accurate theoretical model is built and the method for evaluating system quality are suggested. The bench tests and vehicle experiments are carried out to verify the theoretical analysis.
Technical Paper

Kinematic Analysis and Simulation of the Double Roller Tripod Joint

2019-06-05
2019-01-1526
The kinematic model of the double roller tripod joint is established in order to analyze its kinematic characteristics and provide theoretical basis for its application and improvement. By means of spatial coordinate transformation, the translational and rotational motion equations of the rollers relative to the tracks and trunnions, the motion equation of the center of the tripod and the equations of the input/output angular displacement error and bending angle are derived. The motion simulation of the double roller tripod universal joint was carried out in ADAMS so as to verify the established kinematic model. The results show that the rollers of the double roller tripod joint only have periodic translational motions relative to the tracks while the rollers have both periodic translational and rotational motions relative to the trunnions. The tripod’s center does the circular motion on the tripod plane with the angular velocity 3 times of the input angular velocity.
Technical Paper

Fault Feature Extraction of Elliptically Shaped Bearing Raceway

2019-06-05
2019-01-1564
The elliptically shaped bearing (ESB) with a rigid, elliptical inner race and a flexible, thin-walled outer race is the most easily damaged core component of harmonic drive. The ESB rotates under cycle load of alternating stress due to its special elliptic structure. Hence, the fault features of ESB such as fatigue spalling and pitting are apt to be concealed by the excitation of impulses caused by alternating between major axis and minor axis. In order to diagnose the fault on raceway surfaces of ESB, a new method of CMWT-FH based on Continuous Morlet Wavelet Transform (CMWT) and FFT-based Hilbert (FH) spectrum analysis is proposed to extract the fault feature.
X