Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Study on the Influence of Nonlinearity of Bushing and Air Spring Stiffness in Truck Suspension System on Joint Forces and Moments Calculation

2020-04-14
2020-01-1395
The joint forces and moments applied to the joints in an air suspension system in truck are important input loads for lightweight and fatigue analysis of bushings, air spring brackets, torque arms and trailing arms. In order to derive a reliable solution of joint forces and moments, engineers will generally use Multi Body Dynamics (MBD) simulation software, like ADAMS, which can save time in product development cycle. Taking an air suspension in truck as a study example, a 2-dimensional quasi-static model of an air suspension, whose stiffness of air spring and bushing is nonlinear, is established in ADAMS environment. After that, simulations are performed at the typical and extreme working condition respectively, and the results are compared with another three cases. Case I assumes that the stiffness of air spring is linear but the stiffness of bushings, including torsion and radial stiffness, are nonlinear.
Journal Article

Non-Contact Measurement Method for High Frequency Impedance of Load at the End of Wire Harness

2017-03-28
2017-01-1643
To avoid a trial and error adjustment for designing EMI filters, clarifying load impedance of operating condition, i.e., dynamic impedance of equipment is very useful. Therefore the need to a non-contact measurement method of the impedance connected to a wire harness is increasing rapidly. A measurement method using a network analyzer with two current probes was previously proposed. However, it was confirmed only up to 30 MHz. Many radio equipment operate above 30 MHz such as FM receivers and GPS receivers installed in vehicles. So increasing the measurement frequency is necessary in the auto industry. At first, we tried to expand the applicable frequency to 100 MHz, i.e., FM band. In this study, we applied the transmission line theory using the non-contact measurement method. Furthermore, in order to use the theory, the characteristic impedance and phase constant of the wire harness are required. So we made an additional measurement to estimate them.
Journal Article

Self-Excited Wound-Field Synchronous Motors for xEV

2017-03-28
2017-01-1249
Compact, high efficiency and high reliability are required for an xEV motor generator. IPM rotors with neodymium magnets are widely applied for xEV motors to achieve these requirements. However, neodymium magnet material has a big impact on motor cost and there is supply chain risk due to increased usage of these rare earth materials for future automotive xEV’s. On the other hand, a wound-field rotor does not need magnets and can achieve equivalent performance to an IPM rotor. However, brushes are required in order to supply current to the winding coil of the rotor. This may cause insulation issues on xEV motors which utilize high voltage and high currents. Therefore, it is suggested to develop a system which supplies electric energy to the rotor field winding coil from the stator without brushes by applying a transformer between stator coil and rotor field winding. Specifically, add auxiliary magnetic poles between each field winding pole and wind sub-coils to these poles.
Technical Paper

Modeling and Analysis of Front End Accessory Drive System with Overrunning Alternator Decoupler

2020-04-14
2020-01-0398
The generator is an important loaded component of an engine front end accessory drive system (EFEADS). With a huge moment of inertia and a highest running speed, the vibration and noise often occurs in operation, which has an effect on the service life. Thus an overrunning alternator decoupler (OAD) is used in the EFEADS for reducing the vibration of system. In this paper, a model of EFEADS with an OAD is established. The impact of the OAD on the dynamic responses of pulley of generator and the system are analyzed, and is verified by bench experiments. And the influence of parameters, such as spring stiffness, moment of inertia of generator and loaded torque on the dynamic performances of the system are studied. The influence of misalignment in pulleys on the dynamic performance of system is also discussed. The presented method is useful for optimizing the dynamic performance of system, such as the oscillation of tensioner arm and the slip ratio of the belt-generator pulley.
Technical Paper

Analysis for Dynamic Performances of Engine Front End Accessory Drive System under Accelerating Condition

2020-04-14
2020-01-0399
A model for a generic layout of an engine front end accessory drive system is established. The dynamic performances of the system are obtained via a numerical method. The dynamic performances consist of the oscillation angle of tensioner arm, the slip ratio of each pulley and the dynamic belt tension. In modeling the system, the hysteretic behavior of an automatic tensioner, the loaded torque of the accessory pulley versus the engine speed, the torsional vibration of crankshaft and the creep of the belt are considered. The dynamic performances of the system at steady state and under accelerating condition are analyzed. An example is provided to validate the established model. The measured results show that the torsional vibration of crankshaft is larger and the dynamic performances of the system are different under accelerating conditions, though the acceleration is small.
Technical Paper

A Study on Sliding Mode Control for Active Suspension System

2020-04-14
2020-01-1084
Sliding mode control with a disturbance observer (SMC-DO) is proposed for suppressing the sprung mass vibration in a quarter-car with double-wishbone active suspension system (ASS), which contains the geometry structure of the upper and lower control arms. The governing equations of double-wishbone ASS are obtained by the balance-force analysis of the sprung mass in ASS. Considering uncertainties in damping, stiffness, and external disturbance acting on the sprung mass, we design a disturbance observer based on a sliding mode control (SMC) to estimate these uncertainties under the unknown road excitation. By the Lyapunov minimax approach, the uniform boundedness and the uniform ultimate boundedness of ASS with the proposed control are rigorously proved. Through co-simulation of ADAMS software and MATLAB/Simulink software, the sprung mass acceleration of ASS can be obtained with and without the proposed control.
Journal Article

Approaches for Secure and Efficient In-Vehicle Key Management

2016-04-05
2016-01-0070
Modern vehicles utilize various functionalities that require security solutions such as secure in-vehicle communication and ECU authentication. Cryptographic keys are the basis for such security solutions. We propose two approaches for secure and efficient invehicle key management. In both approaches, an ECU acting as a Key Master in the vehicle is required. The first approach is based on SHE. The Key Master generates and distributes new keys to all ECU based on the SHE key update protocol. The second approach performs key establishment based on key derivation. The Key Master sends a trigger in form of a counter and all ECUs derive new keys based on the received counter value and pre-shared keys. It is thus possible to handle in-vehicle key management without the need for an OEM backend to manage all keys. This reduces cost and complexity of the solution.
Journal Article

Artist-Centric New HMI Software Development Workflow: Development of Real-Time 3D Rendering Engine for Reconfigurable Instrument Clusters

2013-04-08
2013-01-0425
Instrument clusters that display all information on a TFT-LCD screen, also known as reconfigurable instrument clusters, have become the new trend in automotive interiors. DENSO mass-produced the world's first reconfigurable instrument cluster in 2008. To satisfy customer requirements, large quantities of resources were required. Coupled with an iterative process due to requirement changes, development costs became very high. Reducing development costs was vital in order to expand the reconfigurable instrument cluster products line. One solution was to use existing human machine interface (HMI) tools. However, most HMI tools are geared toward software developers and not graphic artists. Furthermore, each tool has its own unique method for image and scene creation, creating an ineffective and sometimes difficult environment for artists familiar with industry-leading computer graphics (CG) software to learn and use the tools.
Journal Article

Design of Seat Mounted ECG Sensor System for Vehicle Application

2013-04-08
2013-01-1339
The causes of deaths in traffic accidents are predominantly human factors such as careless or "heedlessness" driving; recently, accidents that are believed to be due to deteriorated physical conditions, such as heart attacks, have been reported. Non-contact electrocardiography (ECG) monitor for continuous ECG detection while driving is needed to reduce a number of fatal accident by human error like this. Recently there are a lot of papers to detect cardiac electricity using capacitance coupling between human body and electrode. This sensor system must be adopted appropriate high input impedance circuit and noise reduction technique as a function of source impedance value especially for a seat mounted sensor.
Journal Article

Capacitive Humidity Sensors Using Highly Durable Polyimide Membrane

2013-04-08
2013-01-1337
Humidity sensors used in automatic windshield defogging controls contribute to the improvement of fuel consumption. The optimum control of air conditioning systems can be realized by adding humidity information to conventional systems which have used only temperature information. While resistive humidity sensors have been widely used, their sensing range and responsiveness are observed as issues. Resistive sensors cannot function at a humidity range of around 100% RH as well as at a low temperature range, and have a low response rate to sudden changes in humidity. It is considered that resistive humidity sensors will be replaced with capacitive ones which have a wide sensing range and high responsiveness.
Technical Paper

Structural Optimization for Engine Mount Bracket

2007-05-15
2007-01-2419
Design of powertrain mounting bracket is always challenging in achieving good NVH characteristics, sound durability and simultaneously reduced weight. Structural optimization is an effective tool to obtain an optimum design. Depending on the design status, different schemes, i.e. size, topology and shape optimization, are applied. In this paper, a case study of application of structural optimization in the design of a mount bracket has been presented. Firstly, both test and FEA (Finite Element Analysis) results expose problems of the initial design. Therefore, it is necessary to redesign the bracket. With sufficient design freedom and time in topology optimization, design space and optimization parameters are defined. Die direction and other manufacturability considerations for the casting components are vital. Shape optimization is then conducted to further decrease the weight and refine local weakness.
Technical Paper

Effect of Gas-Pressure Stabilizers on Performance Characteristics of a Single-Cylinder Diesel Engine

1990-02-01
900641
Experimental investigation on a high speed single-cylinder diesel engine has shown that a gas-pressure stabilizer in the exhaust system has obvious effect upon engine performance. Two types of such gas pressure stabilizers were tested, and a reduction of about 0.5% to 2% in fuel consumption rate was achieved, which was mainly dependent on the type of stabilizer employed and was more significant under higher speed conditions.
Technical Paper

Ignition Simulation and Visualization for Spark Plug Electrode Design

2007-04-16
2007-01-0940
An ignition simulation and an ignition visualization method that analyze effects of spark plug electrode design have been developed. In the ignition simulation, a programmed heat source corresponds to the discharge energy in the spark gap, and the flame-kernel generation and flame propagation are calculated on the heat balance in the gap, in consideration of thermal transmission to the electrodes. The results by this simulation indicate that high ignitability of fine ground electrode spark plugs is because the miniaturization of the ground electrode reduces the heat loss, and flame growth is thus less disturbed by the loss. The ignition visualization includes taking Schlieren images by laser light to capture flame kernels with weaker luminescence intensity compared to ignition discharge spark luminescence. This visualization enables the observation of the influence of the shape of spark plug electrodes on flame growth.
Technical Paper

Application of NVH Countermeasures for Interior Booming Noise using Elastomeric Tuned Mass Damper

2009-05-19
2009-01-2124
Tuned mass dampers (TMD) are frequently used in vehicles to resolve vibration and interior booming noise issues arising from powertrain's vibration and road excitation. This paper describes a driveshaft NVH case study in which analysis and test were used to solve the NVH problem. A TMD simulation package that utilizes a database of measured elastomeric material propertied. This facilitates the designing of optimized damper systems for a wide variety of vehicle applications. The simulation software takes into account frequency effects on elastomer properties while designing dampers. And the approach has proven to accurately predict performance in vehicles prior to manufacture. Rules of thumb for TMD design are discussed including locations for placement of dampers in automotive structures, determining the needed mass, and measurements and simulations that can greatly improve the success and reducing time-cost for TMD design.
Technical Paper

Modeling of Expert Driver’s Braking Behavior and Its Application to an Automatic Braking System

2009-04-20
2009-01-0785
Deceleration patterns of an expert driver will be formulated using the perceptual risk index for approach and proximity of a preceding vehicle as an example of comfortable braking pattern. It will be shown that the formulated braking pattern can generate smooth deceleration profile uniformly for many conditions of approaching conditions. In addition, brake initiation timing of expert driver will be successfully formulated using the alternative index. Finally, an automatic braking system will be proposed based on the formulated brake initiation model and the velocity profile. Twenty five expert drivers experienced the automatic braking installed in an experimental car. It will be shown that the proposed system can generate smooth profile and realize secure brake patterns based on subjective evaluation.
Technical Paper

Investigation of Vehicle Handling and Ride Comfort Oriented Cooperative Optimization

2010-04-12
2010-01-0722
The characteristics of suspension elastic elements (i.e., spring, damper and anti-roll bar) are directly related to the handling and ride comfort performances, how to tune the characteristics of suspensions' elastic elements is always a big issue in developing the chassis of a vehicle. In this paper, a multi-body dynamics model of a passenger car within MSC.ADAMS® is integrated with iSight FD®, an optimization tool, to carry out a multi-objective optimization for improving the behavior of vehicle handling and ride comfort. The characteristics of suspension elastic elements (i.e., spring, damper and anti-roll bar) are considered as design variables. For handling, the objectives are defined by the measurements from multi-body dynamics simulation of typical double lane change according to ISO3888 standard. For ride comfort, the frequency-weighted RMS (Root Mean Square) value of vertical acceleration of the front seat rail according to ISO2631 standard is set as the objective.
Technical Paper

Glow Plug with Combustion Pressure Sensor

2003-03-03
2003-01-0707
Combustion-pressure-data-based feedback control of fuel injection and EGR is the most promising diesel system, since it can reduce fuel consumption and emissions, as well as noise and vibration, and improve the evaluation efficiency for adapting engine performance to. We developed a combustion pressure sensor installed inside the glow plug. This is superior in maintainability and ease of installation, and can detect the combustion pressure in each cylinder at high accuracy and low cost, with no need for engine modification.
Technical Paper

Diesel Powertrain Energy Management via thermal Management and Electrification

2017-03-28
2017-01-0156
The coming Diesel powertrains will remain as key technology in Europe to achieve the stringent 2025 CO2 emission targets. Especially for applications which are unlikely to be powered by pure EV technology like Light Duty vehicles and C/D segment vehicles which require a long driving range this is the case. To cope with these low CO2 targets the amount of electrification e.g. in form of 48V Belt-driven integrated Starter Generator (BSG) systems will increase. On the other hand the efficiency of the Diesel engine will increase which will result in lower exhaust gas temperatures resulting in a challenge to keep the required NOx reduction system efficiencies under Real Drive Emissions (RDE) driving conditions. In order to comply with the RDE legislation down to -7 °C ambient an efficient thermal management is one potential approach. Commonly utilized means to increase exhaust gas temperature are late injection and/or intake throttling, which enable sufficient NOx reduction efficiency.
Technical Paper

Development of the Large Type Electric-Driven Refrigerator for the HV Truck

2017-03-28
2017-01-0137
In respect to the present large refrigerator trucks, sub-engine type is the main product, but the basic structure does not change greatly since the introduction for around 50 years. A sub-engine type uses an industrial engine to drive the compressor, and the environmental correspondence such as the fuel consumption, the emission is late remarkably. In addition, most of trucks carry the truck equipment including the refrigerator which consumes fuel about 20% of whole vehicle. Focusing on this point, the following are the reports about the system development plan for fuel consumption reduction of the large size refrigerator truck. New concept is to utilize electrical power from HV system to power the electric-driven refrigerator. We have developed a fully electric-driven refrigerator system, which uses regenerated energy that is dedicated for our refrigerator system.
Technical Paper

Numerical Modeling of International Variations in Diesel Spray Combustion with Evaporation Surrogate and Virtual Species Conversion

2017-03-28
2017-01-0582
A methodology for simulating effect of international variations in fuel compositions on spray combustion is proposed. The methodology is validated with spray combustion experiments with real fuels from three different countries. The compositions of those fuels were analyzed through GC×GC and H-NMR. It was found that ignition delay times, flame region and flame luminosity were significantly affected by the compositional variations. For the simulation, an evaporation surrogate consisting of twenty two species, covering basic molecular types and a wide range of carbon numbers, is developed. Each species in the evaporation surrogate is then virtually converted to a reaction surrogate consisting of n-hexadecane, methylcyclohexane and 1,2,4-trimethyl benzene so that combustion reactions can be calculated with a published kinetic model. The virtual species conversion (VSC) is made so as to take over combustion-related properties of each species of evaporation surrogates.
X