Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Investigation of Lubrication Oil as an Ignition Source in Dual Fuel Combustion Engine

2013-10-14
2013-01-2699
Dual fuel engines have shown significant potential as high efficiency powerplants. In one example, SwRI® has run a high EGR, dual-fuel engine using gasoline as the main fuel and diesel as the ignition source, achieving high thermal efficiencies with near zero NOx and smoke emissions. However, assuming a tank size that could be reasonably packaged, the diesel fuel tank would need to be refilled often due to the relatively high fraction of diesel required. To reduce the refill interval, SwRI investigated various alternative fluids as potential ignition sources. The fluids included: Ultra Low Sulfur Diesel (ULSD), Biodiesel, NORPAR (a commercially available mixture of normal paraffins: n-pentadecane (normal C15H32), and n-hexadecane (normal C16H34)) and ashless lubrication oil. Lubrication oil was considered due to its high cetane number (CN) and high viscosity, hence high ignitability.
Technical Paper

On-Road Monitoring of Low Speed Pre-Ignition

2018-09-10
2018-01-1676
To meet increasingly stringent emissions and fuel economy regulations, many Original Equipment Manufacturers (OEMs) have recently developed and deployed small, high power density engines. Turbocharging, coupled with gasoline direct injection (GDI) has enabled a rapid engine downsizing trend. While these turbocharged GDI (TGDI) engines have indeed allowed for better fuel economy in many light duty vehicles, TGDI technology has also led to some unintended consequences. The most notable of these is an abnormal combustion phenomenon known as low speed pre-ignition (LSPI). LSPI is an uncontrolled combustion event that takes place prior to spark ignition, often resulting in knock, and has been known to cause catastrophic engine damage. LSPI propensity depends on a number of factors including engine design, calibration, fuel properties and engine oil formulation. Several engine tests have been developed within the industry to better understand the phenomenon of LSPI.
Technical Paper

Development of a Natural Gas Engine with Diesel Engine-like Efficiency Using Computational Fluid Dynamics

2019-04-02
2019-01-0225
Present day natural gas engines have a significant efficiency disadvantage but benefit with low carbon-dioxide emissions and cheap three-way catalysis aftertreatment. The aim of this work is to improve the efficiency of a natural gas engine on par with a diesel engine. A Cummins-Westport ISX12-G (diesel) engine is used for the study. A baseline model is validated in three-dimensional Computational Fluid Dynamics (CFD). The challenge of this project is adapting the diesel engine for the natural gas fuel, so that the increased squish area of the diesel engine piston can be used to accomplish faster natural gas burn rates. A further increase efficiency is achieved by switching to D-EGR technology. D-EGR is a concept where one or more cylinders are run with excess fueling and its exhaust stream, containing H2 and CO, is cooled and fed into the intake stream. With D-EGR although there is an in-cylinder presence of a reactive H2-CO reformate, there is also higher levels of dilution.
X