Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Comparing Knock between the CFR Engine and a Single Cylinder Research Engine

2019-12-19
2019-01-2156
The confluence of increasing fuel economy requirements and increased use of ethanol as a gasoline blend component has led to various studies into the efficiency and performance benefits of higher octane numbers and high ethanol content fuels in modern engines. As part of a comprehensive study of the autoignition of different fuels in both the CFR octane rating engine and a modern, direct injection, turbocharged spark ignited engine, a series of fuel blends were prepared with varying composition, octane numbers and ethanol blend levels. The paper reports on the second part of this study where cylinder pressures were recorded for fuels under knocking conditions in both a single cylinder research engine (SCRE), utilizing a GM LHU head and piston, as well as the CFR engines used for octane ratings.
Journal Article

Ignition Delay Model Parameterization Using Single-Cylinder Engines Data

2020-09-15
2020-01-2005
The confluence of increasing fuel economy requirements and increased use of ethanol as a gasoline blend component has led to various studies into the efficiency and performance benefits of higher octane numbers and high ethanol content fuels in modern engines. As part of a comprehensive study of the autoignition of different fuels in both the CFR octane rating engine and a modern, direct injection, turbocharged spark-ignited engine, a series of fuel blends were prepared with varying composition, octane numbers and ethanol blend levels. The paper reports on the third part of this study where cylinder pressures were recorded for fuels under knocking conditions in both a single-cylinder research engine (SCE), utilizing a GM LHU head and piston, as well as the CFR engines used for octane ratings.
Journal Article

Bridging the Knock Severity Gap to CFR Octane Rating Engines

2020-09-15
2020-01-2050
It is widely acknowledged that the CFR octane rating engines are not representative of modern engines and that there is a gap in the quantification of knock severity between the two engine types. As part of a comprehensive study of the autoignition of different fuels in both the CFR octane rating engines and a modern, direct injection, turbocharged spark-ignited engine, a series of fuel blends were tested with varying composition, octane numbers and ethanol blend levels. The paper reports on the fourth part of this study where cylinder pressures were recorded under standard knock conditions in CFR engines under RON and MON conditions using the ASTM prescribed instrumentation. By the appropriate signal conditioning of the D1 detonation pickups on the CFR engines, a quantification of the knock severity was possible that had the same frequency response as a cylinder pressure transducer.
Journal Article

On Optical Semi-Quantitative Spectral Study of Low-Speed Pre-Ignition Sources in Spark Ignition Engines

2021-04-06
2021-01-0486
Low-Speed pre-ignition (LSPI) in modern-day, heavily downsized, boosted, and direct-injection spark ignition (SI) engines is a well-known problem. Several mechanisms contribute towards stochastic pre-ignition (SPI), the most prominent being crevice material droplet induced and deposit induced pre-ignition mechanisms. The droplet mechanism is typically dominated by the detergent additives present in the lubricant formulation; more specifically calcium and sodium-based detergent additives correlate strongly with the increased LSPI rates. Deposits flaking off the combustion chamber surfaces can also induce LSPI under certain conditions. This study aimed to develop an optical method designed to investigate the nature of pre-ignition precursors. Southwest Research Institute (SwRI) utilized an optically accessible GM 2.0 L LHU engine to study the pre-ignition phenomenon and studied the nature of pre-ignition precursors using spectral information from one of the cylinders in this engine.
X