Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Detailed Characterization of Particle Emissions from Advanced Internal Combustion Engines

2021-04-06
2021-01-0620
Detailed characterization of particle emissions from three different engine technologies were performed, two of which were advanced technology engines. One of the engines was a nonroad Tier 4 Final emission regulation compliant 6.8L John Deere PSS 6068 diesel engine operated with its production calibration strategy. The other two engine platforms were advanced engine technologies whose controllers were developed by Southwest Research Institute (SwRI). These included a dual fuel Navistar MaxxForce 13L natural gas-diesel engine and a Cummins ISX 15L diesel engine. The dual fuel engine was operated in two distinct modes, conventional dual fuel (CDF) mode and low temperature reactivity controlled compression ignition (RCCI) mode. The Cummins ISX engine was operated using a “hot” or low EGR combustion strategy. For each engine technology, the test campaign involved steady-state test modes ranging from low speed low load to high speed high load conditions.
Technical Paper

Detailed Characterization of Gaseous Emissions from Advanced Internal Combustion Engines

2021-04-06
2021-01-0634
With the advancement of engine technologies and combustion strategies, aftertreatment architectures are expected to evolve as they continue to be the primary emissions mitigation hardware. Some of the engine approaches offer unique challenges and benefits that are not well understood beyond criteria pollutant emissions. As such, there continues to be a need to quantify engine emissions characteristics in pursuit of catalyst technology development and the use of advanced simulation tools. The following study discusses results from an extensive engine emissions assessment for current state-of-the-art technology and novel combustion regimes. The engines tested include a Tier 4 final compliant 6.8 L John Deere PSS 6068 diesel engine, a modified 15 L diesel engine, and a dual fuel 13 L natural gas-diesel engine. The dual fuel engine could operate in conventional positive ignition mode (CDF) or low temperature reactivity-controlled compression ignition mode (RCCI).
Journal Article

Technology Levers for Meeting 2027 NOx and CO2 Regulations

2023-04-11
2023-01-0354
Commercial vehicles require fast aftertreatment heat-up to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations while minimizing CO2. The focus of this paper is to identify the technology levers when used independently and also together for the purpose of NOX and CO2 reduction toward achieving 2027 emissions levels while remaining CO2 neutral or better. A series of independent levers including cylinder deactivation, LO-SCR, electric aftertreatment heating and fuel burner technologies were explored. All fell short for meeting the 2027 CARB transient emission targets when used independently. However, the combinations of two of these levers were shown to approach the goal of transient emissions with one configuration meeting the requirement. Finally, the combination of three independent levers were shown to achieve 40% margin for meeting 2027 transient NOx emissions while remaining CO2 neutral.
X