Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Effect of Micro-Hole Nozzle on Diesel Spray and Combustion

2018-04-03
2018-01-0301
The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. One area of promise, injector nozzles with micro-holes (i.e. down to 30 μm), still need further investigation. Reduction of nozzle orifice diameter and increased fuel injection pressure typically promotes air entrainment near-nozzle during start of injection. This leads to better premixing and consequently leaner combustion, hence lowering the formation of soot. Advances in numerical simulation have made it possible to study the effect of different nozzle diameters on the spray and combustion in great detail. In this study, a baseline model was developed for investigating the spray and combustion of diesel fuel at the Spray A condition (nozzle diameter of 90 μm) from the Engine Combustion Network (ECN) community.
Technical Paper

Development of High Compression-Ratio Stepped-Lip Piston using Machine Learning

2022-08-30
2022-01-1054
Interaction between a diesel spray and piston plays a significant role in overall combustion and emissions performance in compression-ignition engines. It is essential to design the lip feature respective to spray targeting and the following charge motion for combustion systems that rely on spray-piston interaction strongly, such as a stepped-lip piston. This study used a numerical campaign using computational fluid dynamics (CFD) simulation to optimize a stepped-lip combustion system at a 22:1 compression ratio (CR) for both performance and emissions. This is a substantial step up in CR from the stock value of 17:1 for the same engine platform. A machine learning model was used to identify the best combination of features from a design space involving hundreds of potential piston designs and injector nozzle configurations. This study provides a discussion on the general combustion characteristics of the stepped-lip combustion system and the sensitivity of the design parameters.
Technical Paper

Predictive GT-Power Simulation for VNT Matching to EIVC Strategy on a 1.6 L Turbocharged GDI Engine

2019-04-02
2019-01-0192
The use of early intake valve closing (EIVC) can lead to improvements in spark-ignition engine efficiency. One of the greatest barriers facing adoption of EIVC for high power-density applications is the challenge of boosting as EIVC strategies reduce volumetric efficiency. Turbochargers with variable nozzle turbines (VNT) have recently been developed for gasoline applications operating at high exhaust gas temperatures. The use of a single VNT as a boost device may provide a lower-cost option compared to two-stage boosting systems or 48 V electronic boost devices for some EIVC applications. A predictive model was created based on engine testing results from a 1.6 L turbocharged gasoline direct injection engine [1]. The model was tuned so that it predicted burn-rates and end-gas knock over an engine operating map with varying speeds, loads, compression ratios and fuel types.
Technical Paper

Combined Benefits of Variable Valve Actuation and Low-Pressure EGR on SI Engine Efficiency Part 1: Part Load

2019-04-02
2019-01-0241
Modern spark ignited engines face multiple barriers to achieving higher thermal efficiency. This study investigated the potential of utilizing both continuously variable valve actuation (VVA) and low-pressure cooled exhaust gas recirculation (EGR) to improve engine thermal efficiency at part-load conditions. Six speed / load points were investigated on a 1.6 L turbocharged gasoline direct injection engine. A design of experiment (DoE) approach using the Box-Behnken surface response model was conducted. The DoE results revealed different brake specific fuel consumption (BSFC) responses to the valve phasing and the intake valve lift at different operating conditions. Further engine testing was carried out at each speed / load point to confirm the engine efficiency and combustion performance when targeting different valvetrain controls and EGR strategies. The results indicated that utilizing the VVA system could always reduce BSFC at the studied operating conditions.
Technical Paper

Combustion Stabilization for Enriched D-EGR Applications via Air-Assisted Pre-Chambers

2021-04-06
2021-01-0481
The dedicated exhaust gas recirculation (D-EGR®) concept developed by Southwest Research Institute (SwRI) has demonstrated a thermal efficiency increase on several spark-ignited engines at both low and high-load conditions. Syngas (H2+CO) is produced by the dedicated cylinder (D-cyl) which operates at a rich air-fuel ratio. The syngas helps to stabilize combustion under highly dilute conditions at low loads as well as mitigating knock at high loads. The D-cyl produces all the EGR for the engine at a fixed rate of approximately 25% EGR for a four-cylinder engine and 33% EGR for a six-cylinder engine. The D-cyl typically runs up to an equivalence ratio of 1.4 for gasoline-fueled engines, beyond which the combustion becomes unstable due to the decreasing laminar burning velocity caused by rich conditions. Conventional active-fueled and passive pre-chambers have benefits of inducing multi-site ignition and enhancing turbulence in the main chamber.
Technical Paper

Combined Benefits of Variable Valve Actuation and Low-Pressure EGR on SI Engine Efficiency Part 2: High Load

2019-04-02
2019-01-0237
The abnormal autoignition of the unburned gas, namely knock, at high loads is a major challenge for modern spark ignited engines. Knock prevents the application of high compression ratios due to the increased unburned gas temperature, and it becomes increasingly severe for downsized engines with high specific powers. The current paper reports on the potential of utilizing continuously variable valve actuation (VVA) and low-pressure exhaust gas recirculation (EGR) to reduce knock tendency at high loads. Five speed / load points were investigated on a 1.6 L turbocharged gasoline direct injection engine. The brake specific fuel consumption (BSFC) response to the valve phasing and the intake valve lift was investigated with the design of experiment (DoE) approach. The DoE was conducted using a Box-Behnken surface response model. The results exhibited insensitive response of BSFC to intake valve lift and overlap.
Technical Paper

Advances Toward the Goal of a Genuinely Conjugate Engine Heat Transfer Analysis

2019-01-15
2019-01-0008
As the design of engines advances and continues to push the capabilities of current hardware closer to their durability limits, more accurate and reliable analysis is necessary to ensure that designs are robust. This research evaluates a method of conjugate heat transfer analysis for a diesel engine that combines the combustion CFD, Engine FEA, and cooling jacket CFD with the aim of getting more accurate heat loss predictions and a more accurate temperature distribution in the engine than with current analysis methods. A 15.0 L Cummins ISX heavy duty engine operating at 1250 RPM and 15 bar BMEP load is selected for this work. Spray combustion computational fluid dynamics (CFD) simulations are performed for the diesel engine and the results are validated with experimental data. Finite Element Analysis (FEA) simulations were performed in a separate software platform.
Technical Paper

Evaluation of Diesel Spray with Non-Circular Nozzle - Part I: Inert Spray

2019-01-15
2019-01-0065
Numerous studies have characterized the impact of high injection pressure and small nozzle holes on spray quality and the subsequent impact on combustion. Higher injection pressure or smaller nozzle diameter usually reduce soot emissions owing to better atomization quality and fuel-air mixing enhancement. The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. An alternate approach impacting spray quality is investigated in this paper, specifically the impact of non-circular nozzles. The concept was explored experimentally in an optically accessible constant-volume combustion chamber (CVCC). Non-reacting spray evaluations were conducted at various ambient densities (14.8, 22.8, 30 kg/m3) under inert gas of Nitrogen (N2) while injection pressure was kept at 100 MPa. Shadowgraph imaging was used to obtain macroscopic spray characteristics such as spray structure, spray penetration, and the spray cone angle.
Journal Article

Extend Syngas Yield through Increasing Rich Limit by Stratified Air Injection in a Single Cylinder Engine

2020-04-14
2020-01-0958
Dedicated exhaust gas recirculation (D-EGR®) concept developed by Southwest Research Institute (SwRI) has demonstrated a thermal efficiency increase on many spark-ignited engines at both low and high load conditions. The syngas (H2+CO) produced in the dedicated cylinder (D-cyl) by rich combustion helps to stabilize combustion at highly dilute conditions at low loads and mitigate knock at high loads. The dedicated cylinder with 25% EGR can typically run up to equivalence ratio of 1.4, beyond which the combustion becomes unstable. By injecting fresh air near the spark plug gap at globally rich conditions, a locally lean or near-stoichiometric mixture can be achieved, thus facilitating the ignitability of the mixture and increasing combustion stability. With more stable combustion a richer global mixture can be introduced into the D-cyl to generate higher concentrations of syngas. This in turn can further improve the engine thermal efficiency.
Technical Paper

A Comprehensive CFD-FEA Conjugate Heat Transfer Analysis for Diesel and Gasoline Engines

2019-04-02
2019-01-0212
As the efforts to push capabilities of current engine hardware to their durability limits increases, more accurate and reliable analysis is necessary to ensure that designs are robust. This paper evaluates a method of Conjugate Heat Transfer (CHT) analysis for a gasoline and a diesel engine that combines combustion Computational Fluid Dynamics (CFD), engine Finite Element Analysis (FEA), and cooling jacket CFD with the goal of obtaining more accurate temperature distribution and heat loss predictions in an engine compared to standard de-coupled CFD and FEA analysis methods. This novel CHT technique was successfully applied to a 2.5 liter GM LHU gasoline engine at 3000 rpm and a 15.0 liter Cummins ISX heavy duty diesel engine operating at 1250 rpm. Combustion CFD simulations results for the gasoline and diesel engines are validated with the experimental data for cylinder pressure and heat release rate.
Technical Paper

A New Methodology for Comparing Knock Mitigation Strategies and Their Stability Margin

2023-04-11
2023-01-0248
The automotive sector is rapidly transitioning to decarbonized, electric vehicles solutions. However, due to challenges with such rapid adoption, Internal combustion engines (ICE) are expected to be used for decades to come. In this transition period it is important to continue to improve ICE efficiency. A key design parameter to increase ICE efficiency is the compression ratio. For gasoline engines, the compression ratio is limited so as to avoid knock. Engine designers can employ several strategies to mitigate knock and enable higher compression ratios. In this study, a new methodology has been developed to compare various knock mitigation strategies. By comparing the knock limited load at a given combustion phasing the expected compression ratio increase can be inferred.
X