Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Minimum Functionality Lunar Habitat Element Design: Requirements and Definition of an Initial Human Establishment on the Moon

2009-07-12
2009-01-2369
This paper summarizes the activities of the University of Maryland Space Systems Laboratory in performing a design study for a minimum functionality lunar habitat element for NASA's Exploration Systems Mission Directorate. By creating and deploying a survey to personnel experienced in Earth analogues, primarily shipboard and Antarctic habitats, a list of critical habitat functions was established, along with their relative importance and their impact on systems design/implementation. Based on a review of relevant past literature and the survey results, four habitat concepts were developed, focused on interior space layout and preliminary systems sizing. Those concepts were then evaluated for habitability through virtual reality (VR) techniques and merged into a single design. Trade studies were conducted on habitat systems, and the final design was synthesized based on all of the results.
Technical Paper

Investigations into Several Approaches to EVA-Robot Integration

2007-07-09
2007-01-3232
Extensive prior research at the University of Maryland Space Systems Laboratory has identified significant operational advantages to high levels of integration between EVA crew and dexterous robotics. Crew performance on recent Hubble Space Telescope repair missions was broken down into task primitives, and evaluated for the impact of dexterous robotics in direct support of extravehicular activity. Results demonstrate that direct EVA-robotic cooperation can increase human performance in satellite servicing tasks by factors ranging from at least 60% (for highly complex and dexterous servicing tasks) to as much as 400% for more simple activities with greater levels of planned orbital replacement unit (ORU) interchange. This paper details experimental and analytical investigations of differing approaches to adding dexterous robotic capabilities to the EVA work site, via increasingly direct integration of robotics into the space suit system itself.
Technical Paper

Development and Testing of a Metabolic Workload Measuring System for Space Suits

2007-07-09
2007-01-3212
Real time knowledge of the metabolic workload of an astronaut during an Extra-Vehicular Activity (EVA) can be instrumental for space suit research, design, and operation. Three indirect calorimetry approaches were developed to determine the metabolic workload of a subject in an open-loop space suit analogue. A study was conducted to compare the data obtained from three sensors: oxygen, carbon dioxide, and heart rate. Subjects performed treadmill exercise in an enclosed helmet assembly, which simulated the contained environment of a space suit while retaining arm and leg mobility. These results were validated against a standard system used by exercise physiologists. The carbon dioxide sensor method was shown to be the most reliable and a calibrated version of it will be integrated into the MX-2 neutral buoyancy space suit analogue.
Technical Paper

Evaluation of a Hybrid Elastic EVA Glove

2002-07-15
2002-01-2311
The hybrid elastic design is based upon an American Society for Engineering Education (ASEE) glove designed by at the Space Systems Laboratory (SSL) in 1985. This design uses an elastic restraint layer instead of convolute joints to achieve greater dexterity and mobility during EVA (extravehicular activity). Two pilot studies and a main study were conducted using the hybrid elastic glove and a 4000-series EMU (extravehicular activity unit) glove. Data on dexterity performance, joint range of motion, grip strength and perceived exertion was assessed for the EMU and hybrid elastic gloves with correlations to a barehanded condition. During this study, 30 test subjects performed multiple test sessions using a hybrid elastic glove and a 4000-series shuttle glove in a 4.3psid pressure environment. Test results to date indicate that the hybrid elastic glove performance is approximately similar to the performance of the 4000-series glove.
Technical Paper

System Overview and Operations of the MX-2 Neutral Buoyancy Space Suit Analogue

2006-07-17
2006-01-2287
A fully operational space suit analogue for use in a neutral buoyancy environment has been developed and tested by the University of Maryland’s Space Systems Laboratory. Repeated manned operations in the Neutral Buoyancy Research Facility have shown the MX-2 suit analogue to be a realistic simulation of operational EVA pressure suits. The suit is routinely used for EVA simulation, providing reasonable joint restrictions, work envelopes, and visual and audio environments comparable to those of current EVA suits. Improved gloves and boots, communications carrier assembly, in-suit drink bag and harness system have furthered the semblance to EVA. Advanced resizing and ballasting systems have enabled subjects ranging in height from 5′8″ to 6′3″ and within a range of 120 lbs to obtain experience in the suit. Furthermore, integral suit instrumentation facilitates monitoring and collection of critical data on both the suit and the subject.
Technical Paper

Development and Testing Update on the MX-2 Neutral Buoyancy Space Suit Analogue

2004-07-19
2004-01-2343
The University of Maryland Space Systems Laboratory has developed a system that replicates some limited aspects of pressure suits to facilitate neutral buoyancy research into EVA bioinstrumentation, advanced EVA training, and EVA/robotic interactions. After a two year upgrade from its MX-1 predecessor, the MX-2 space suit analogue is currently undergoing a variety of system integration tests in preparation for initial operational testing, leading to routine use for EVA simulation and as a testbed for advanced space suit technology. The MX-2 is built around a hard upper torso with integrated hemispherical helmet and rear-entry hatch. Three-layer soft-goods are used for the arms and lower torso, while an open loop air system regulates suit pressure to 3 psid. Wrist disconnects allow the use of standard EMU or Orlan gloves, or experimental gloves such as the mechanical counterpressure gloves and power-assisted gloves developed previously by the SSL.
Technical Paper

Task Scheduling for Cooperative Human/Robotic Space Operations

2008-06-29
2008-01-1985
Future space missions will involve humans and robots cooperatively performing operational tasks in various team combinations. Part of the required preparation for such missions includes understanding the issues involved in task allocation between disparate agents, and efficiently ordering tasks within the mission constraints. The scheduling tool developed in this research distributes pre-allocated task primitives between a cooperative human crew and dexterous robotic team. It combines real-world precedent constraints with algorithms from scheduling theory to reorder and tighten each crew member's individual schedule. The schedules minimize astronaut involvement time by stacking astronaut-performed tasks together in the schedule. This also minimizes astronaut workload in the completion of each task. Hubble Space Telescope Servicing Mission 3A was used as an example to test the allocation and scheduling tool.
X