Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Impacts of Fly Ash Particles on the Zinc Aluminum Casting Alloy and Its Mechanical Properties

2024-02-23
2023-01-5123
Fly ash is a light byproduct produced when pulverized coal is burnt in suspension-fueled furnaces in power plants. Separating the recovered fly ash from the exhaust gases. Due to its distinct physical and chemical properties, it is utilized in a wide variety of industrial and building applications. These applications include the production of cement and concrete, the stabilization of liquid waste, and hydraulic mining backfill. Fly ash has the potential to enhance the physical and mechanical properties of aluminum castings, as well as reduce their costs and increase their densities, all while lowering their prices. This research investigated the effect of fly ash incorporation on the mechanical properties of the aluminum casting alloy ZA8. Investigated were the cast and heat-treated varieties of unreinforced ZA8 and its metal matrix composite of 15% ferrous, 20% nickel, 10% fly ash, and 10% magnesium carbide.
Technical Paper

Topology, Morphologies, and Material Properties of 40% Aluminium-10% Nickel Boride Alloys as a Function of Recrystallization Rate

2024-02-23
2023-01-5112
The study will involve conducting analyses on microstructures consisting of 40% aluminium and 10% nickel, with variations in the rate of hardening. The aluminium and nickel, both of commercial grade, were subjected to a crucible furnace where they were heated to a temperature of 1600 degrees Celsius until they reached a molten state. The utilization of permanent moulds was necessary for casting the metal at temperatures of 20, 60, and 100 degrees Celsius. In order to document the freezing curvature of the castings, a centralized data collection technique was implemented. The microstructure and mechanical properties of this alloy were examined by researchers. The rate of solidification was observed to increase and the duration of the process was observed to decrease as the temperature of the mould was reduced. The microstructure has been modified due to disparities in solidification rates.
X