Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Evolution of A356 with Flyash Composites on Metallurgical Mechanical and Tribological Behaviour under Dry and Wet Conditions

2021-10-01
2021-28-0272
Among all metal matrix composites, A356 is the most applicable matrix due to its low density and exhibits nominal strength with soft nature. This proposed study is concerned with the examination of mechanical and tribological behavior of virgin A356 alloy and A356 reinforced with 10wt.% power plant waste flyash particles composites were processed by liquid metallurgy stir cum squeeze casting technique. The fabricated composites expose enhanced higher hardness when compared to the virgin A356 alloy due to the presence of flyash particles in the matrix. The wear and friction behavior of casted samples were evaluated with a pin on disk tribometer apparatus under dry and wet sliding environment at the presence of lubricant (SAE 80W-90) by varying sliding load of 10N-40N and sliding velocity of 1-3 m/s respectively. Wear rate increase with the increasing load and sliding velocity.
Technical Paper

Tribological Performance of Brake Friction Composites with Sb2O3 Pre-blended with Metal Sulfide

2022-12-23
2022-28-0575
The brake friction composite in brake pad plays a crucial role in converting the energy by absorbing the frictional shear load against the rotor. During the braking action, the brake friction composite maintains a stable coefficient of friction in all adverse conditions. The metal sulfide plays a significant role in stabilizing the coefficient of friction as they oxidized at elevated temperature at the interface. The research work evaluates the tribological performance of the brake pads developed with the mixture of pre-blended metal sulfide and Sb2O3 in varying wt.% such as 3, 5 and 7% in a standard friction material formulation. The brake friction composites are fabricated with the compression moulding technique. The tribological properties of the fabricated samples are evaluated by SAE J661a standards. The worn surfaces are characterized by SEM to understand the wear mechanism.
Technical Paper

Investigation on Mechanical Properties of ER70S-6 Copper-Coated Steel Wire Sample Produced by Wire Arc Additive Manufacturing (WAAM)

2024-02-23
2023-01-5105
Wire arc additive manufacturing technology has become a promising alternative technology to high-volume metal deposition in many manufacturing industries like aerospace and automotive due to arc stability, long process cycle time, and formability. In this work, the Fanuc arc mate robot forms a single-pass, single-layer structure with a 1.2 mm diameter wire of copper-coated steel. Pure Argon gas is used as a shielding gas to protect the weld from oxidation. Different welding speed is carried out to analyze the bead thickness and height. Current and voltage as a heat input with optimal welding speed, a 10 kg straight wall is built with an operative building rate of 3.94 kg/h. The Rockwell hardness test is used to determine the hardness of the material, and it is discovered that it is 80 HRB. The tensile test is performed to determine the tensile strength and yield strength of the component; the measured values are 483.88 N/mm2 and 342.156 N/mm2, respectively.
Technical Paper

Structure and Behaviour Characteristics of Aluminum –Nickel- Zinc Alloy by Spray Forming

2024-02-23
2023-01-5120
The microstructure of the alloy and the manner in which it responds to heat treatment has been investigated. The alloy was aged at 550OC when it was initially spray-formed, or when its thickness was decreased by 38%. Before further aging of some specimens, a four-hour solution treatment at 1015OC was performed. The subsequent phase was a cold deformation that was barely 60% of the sample's initial thickness. The alloys' electrical conductivity and hardness may be evaluated based on how long they had been created. Following solution treatment and cold rolling, the alloy's peak hardness was around 380 kgf/mm2. In samples aged immediately under spray-produced conditions, the maximum peak hardness of 255 kgf/mm2 was attained. Conductivities in freshly cold-rolled samples could reach up to 75% of the standard for annealed copper internationally. It looks at the microstructural features of this alloy in this context, paying close attention to how various processing conditions affect them.
Technical Paper

Evaluation of Tribological Behaviour of Stir Casted Aluminium Alloy Hybrid Composites

2024-02-23
2023-01-5171
Employing the stir casting process, a unique hybrid composites were fabricated, using A356 as the matrix and reinforced with ZrSiO4 and TiB2 particulates. The produced specimens were initially in their as-cast state. Following that, the reinforcement particle concentrations were changed 2 and 4 weight percentages (wt%) of ZrSiO4 and keeping a constant 6 wt% of TiB2. Three samples were exposed to dry sliding conditions at room temperature using a tribometer. Two applied loads of magnitude 10N and 50N and a sliding velocity of 1m/s and 2m/s were selected as testing parameters. After measuring the wear rate (WR) and the coefficient of friction (COF), the worn-out pin surfaces were examined using scanning electron microscopy (SEM).
Technical Paper

Characteristics Enhancement of Mechanical Properties of Aluminum Metal Matrix Composites Reinforced with Silicon Carbide Using Stir Casting Technique

2024-02-23
2023-01-5164
Metal Matrix Composites (MMC) made of the aluminium as base metal is now being used in diversed applications due to its extended properties. The physical, chemical, mechanical and structural properties make it as irresistible in the engineering applications. Metal Matrix Composites (MMCs) based on aluminium have increased in popular in various applications including aerospace, car, space, transportation, and undersea applications.. In this study, Al LM25/SiCp MMC was fabricated using a low-cost stir casting technique, and the weight percentage of SiCp was varied from 4% to 8% to prepare the MMC plates. The aim of the research was to investigate the mechanical properties of the specimen, including hardness, tensile, and impact tests. The microstructure of the specimens is investigated which shows the bonding between the particles which is fabricated by Stir casting method. The sample 2 has better mechanical properties when it is compared with other specimens.
Technical Paper

Deformation of 8561 Aluminium Alloy during Mechanical Stir Processing at Higher Temperature

2024-02-23
2023-01-5160
The current research examines the structural and mechanical properties of sheets made from the 8561 aluminum alloy using the dynamic stir procedure. After being treated perpendicular to the direction of rolling, the compressive material characteristics of the strips were investigated at room temperature in the longitudinal and vertical dimensions relative to the treatment orientation. Tensile tests at the grain boundary were also performed at relatively high temperatures and different strain rates to assess the ductile mechanical properties of the crystallization substance and to ensure the distinctions from the parent material caused by the dynamic stir process. Tensile testing at temperatures and strain rates ranging from 380 °C to 780 °C was employed in parallel studies of the material's behavior at high temperatures. Electron microscopy was used to examine the fracture surfaces of specimens evaluated at various temperatures.
Technical Paper

Hot Tensile Properties of Shielded Metal Arc Welded Similar and Dissimilar Joint of 9Cr-1Mo Steel and 304 Stainless Steel

2024-01-15
2024-01-5000
The recent demand for power generation capability has raised the operating temperature of the power plants in the range of 600°C. High operating temperature leads to material degradation or reduced lifespan of boilers, which necessitates the analysis of the high-temperature behavior of welded joints of power plant boilers for a long lifespan and improved efficiency. Gr91 martensitic and SS304 austenitic stainless steel are identified as the primary piping material for these boilers. The boiler piping involves similar weld joints (Gr91/Gr91 and SS304/SS304) and dissimilar weld joints (SS304/Gr91) known as transition joints. These joints are exposed to high temperatures for a long duration during their service and it is therefore necessary to evaluate the high-temperature behavior of these weld joints. The hot tensile test is a short-term high-temperature test that serves as a valuable tool for analyzing the high-temperature behavior of the welds.
X