Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Numerical Simulation of HCCI Engine With Multi-Stage Gasoline Direct Injection Using 3D-CFD With Detailed Chemistry

2004-03-08
2004-01-0563
In this paper, the detailed chemical kinetics was implemented into the three-dimensional CFD code to study the combustion process in HCCI engines. An extended hydrocarbon oxidation reaction mechanism (89 species, 413 reactions) used for high octane fuel was constructed and then used to simulate the chemical process of the ignition, combustion and pollutant formation in HCCI conditions. The three-dimensional CFD / chemistry model (FIRE/CHEMKIN) was validated using the experimental data from a Rapid Compression Machine. The simulation results show good agreements with experiments. Finally, the improved multi-dimensional CFD code has been employed to simulate the intake, spray, combustion and pollution formation process of the gasoline direct injection HCCI engine with multi-stage injection strategy. The models account for intake flow structure, spray atomization, spray/wall interaction, droplet evaporation and gas phase chemistry in complex multi-dimensional geometries.
Technical Paper

Effects of Spark Ignition and Stratified Charge on Gasoline HCCI Combustion With Direct Injection

2005-04-11
2005-01-0137
HCCI combustion was studied in a 4-stroke gasoline engine with a direct injection system. The electronically controlled two-stage gasoline injection and spark ignition system were adopted to control the mixture formation, ignition timing and combustion rate in HCCI engine. The engine could be operated in HCCI combustion mode in a range of load from 1 to 5 bar IMEP and operated in SI combustion mode up to load of 8 bar IMEP. The HCCI combustion characteristics were investigated under different A/F ratios, engine speeds, starts of injection, as well as spark ignition enabled or not. The test results reveal the HCCI combustion features as a high-pressure gradient after ignition and has advantages in high thermal efficiency and low NOx emissions over SI combustion. At the part load of 1400rpm and IMEP of 3.5bar, ISFC in HCCI mode is 25% lower and NOx emissions is 95% lower than that in SI mode.
Technical Paper

Visualization and Performance Analysis of Gasoline Homogeneous Charge Induced Ignition by Diesel

2005-04-11
2005-01-0136
In order to enhance the thermal efficiency of gasoline engines, a combustion mode namely Homogeneous Charge Induced Ignition (HCII) was introduced and examined in this paper. Port-injected gasoline was used as the main fuel and formed a homogeneous charge in the cylinder. Diesel was used as the pilot fuel, directly injected into the cylinder, and self-ignited and this induced the ignition of the premixed gasoline-air charge. The images of HCII combustion process were taken on an optical engine through a high-speed CMOS camera. The multi-point induced ignition phenomena were observed and the parameters like flame luminance, ignition delay and combustion duration were analyzed by image analysis. The result shows that as the gasoline/diesel ratio increases with a fixed low pilot amount, the ignition delay increases, the initial ignition area extends from the center towards the periphery of the combustion chamber, and the combustion velocity increased.
Technical Paper

Study of Injection Strategies of Two-stage Gasoline Direct Injection (TSGDI) Combustion System

2005-04-11
2005-01-0107
Gasoline Direct Injection (GDI) engines developed at nineties of the twentieth century can greatly improve the fuel economy. But the combustion chamber design and mixture control of the engines are very complex compared with Port Fuel Injection (PFI) gasoline engines. A two-stage gasoline direct injection (TSGDI) combustion system is developed and aimed to solve the problem of the complexity. Two-stage fuel injection and flexible injection timings are adopted as main means to form reasonable stratified mixture in the cylinder. A simple combustion chamber and helical intake port are designed to assist the mixture's stable combustion, which reduces the difficulties of the combustion system design. Systematical simulation and experimental studies of the effects of injection strategies such as different first,second injection timings and injection ratios, on the mixture formation processes and engine performanc are made in detail.
X