Refine Your Search

Topic

Author

Search Results

Journal Article

Subsystem Rollover Tests for the Evaluation of ATD Kinematics and Restraints

2010-04-12
2010-01-0518
The development of a repeatable dynamic rollover test methodology with meaningful occupant protection performance objectives has been a longstanding and unmet challenge. Numerous studies have identified the random and chaotic nature of rollover crashes, and the difficulty associated with simulating these events in a laboratory setting. Previous work addressed vehicle level testing attempting to simulate an entire rollover event but it was determined that this test methodology could not be used for development of occupant protection restraint performance objectives due to the unpredictable behavior of the vehicle during the entire rollover event. More recent efforts have focused on subsystem tests that simulate distinct phases of a rollover event, up to and including the first roof-to-ground impact.
Journal Article

NLMPC for Real Time Path Following and Collision Avoidance

2015-04-14
2015-01-0313
This paper presents a nonlinear control approach to achieve good performances in vehicle path following and collision avoidance when the vehicle is driving under cruise highway conditions. Nonlinear model predictive control (NLMPC) is adopted to achieve online trajectory control based on a simplified vehicle model. GMRES/Continuation algorithm is used to solve the online optimization problem. Simulations show that the proposed controller is capable of tracking the desired path as well as avoiding the obstacles.
Journal Article

Simulation Fidelity Improvement of H350 Lower Tibia Indices

2015-04-14
2015-01-0578
Finite element dummy models have been more and more widely applied in virtual development of occupant protection systems across the automotive industry due to their predictive capabilities. H350 dyna dummy model [1] is a finite element representation of the Hybrid III male dummy [2], which is designed to represent the average of the United States adult male population. Lower extremity injuries continue to occur in front crash accidents despite increasing improvement of vehicle crashworthiness and occupant restraint system. It is therefore desirable to predict lower tibia injury numbers in front occupant simulations. Though lower tibia loading/index predictions are not studied as much as the FMVSS 208 regulated injury numbers, the tibia indices are injury criteria that need to be assessed during IIHS and Euro NCAP frontal offset occupant simulations. However during front crash simulations, it is very difficult to achieve good correlations or predictions of lower tibia loadings.
Journal Article

Friction Estimation at Tire-Ground Contact

2015-04-14
2015-01-1594
The friction estimation at the tire-ground contact is crucial for the active safety of vehicles. Friction estimation is a key problem of vehicle dynamics and the ultimate solution is still unknown. However the proposed approach, based on a simple idea and on a simple hardware, provides an actual solution. The idea is to compare the tire characteristic at a given friction (nominal characteristic) with the actual characteristic that the tire has while running. The comparison among these two characteristics (the nominal one and the actual one) gives the desired friction coefficient. The friction coefficient is expressed in vector form and a number of running parameters are identified. The mentioned comparison is an efficient but complex algorithm based on a mathematical formulation of the tire characteristic. The actual tire characteristic is somehow measured in real time by a relatively simple smart wheel which is able to detect the three forces and the three moments acting at the hub.
Journal Article

Effect of Prior Austenite Grain Size on Impact Toughness of Press Hardened Steel

2016-04-05
2016-01-0359
Impact toughness (or resistance to fracture) is a key material property for press hardened steel used in construction of the safety-critical elements of automotive body structures. Prior austenite grain size, as primarily controlled by the incoming microstructure and austenitization process, is a key microstructural feature that influences the impact toughness of press hardened steel. In this paper, a special Charpy V-notch impact test is developed to quantify the impact toughness of press hardened steel sheets with various prior austenite grain sizes, by stacking a number of thin sheets via mechanical riveting. Both the ductile-to-brittle transition temperature and upper shelf energy are analyzed in an effort to establish a correlation between impact toughness and prior austenite grain size. Within tested conditions, impact performance shows only a slight decrease as the prior austenitic grain size increases from 18 to 38 microns.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Technical Paper

Dynamic Tests of Racing Seats and Simulation with Vedyac Code

1998-11-16
983059
Dynamic tests have been performed on carbon fiber racing seats following the FIA regulations. The tests have shown, in rear impact tests, a relatively strong rebound leading to large forward bending of neck, and, in side impact tests, very large lateral displacement of the head, the latter protruding dangerously towards hard portions of the car structure. Stiffening the seat back by steel struts results in reducing strongly both the motion and the acceleration of the head. Simulations of the dynamics of the tests have been done with multi-body models, including the Hybrid III dummy and seat deflection, by means of the program VEDYAC. It has been found that computer simulation can predict very accurately the result of a test, provided the numerical models have been carefully calibrated to match the dummy tolerance bands. Once they have been calibrated and validated with a number of tests, the computer models can be very useful to extend the test results to different test conditions.
Technical Paper

Signal Age Fault Detection in Distributed Embedded Automotive Systems

2010-04-12
2010-01-0205
More and more advanced features such as adaptive cruise control and collision avoidance are being adopted in road vehicles and these features are usually implemented as distributed systems across multiple ECU nodes that are connected by communication busses. In order to tolerate transient faults affecting a safety critical signal transmitted via bus in such distributed systems, the last used value or a default safe value for a safety critical signal is usually used among different ECU nodes on the bus for a pre-defined time interval before taking some other fault mitigation actions such as disabling a feature. Thus it becomes very important to monitor a signal's age and detect any signal age fault, where a signal age fault is defined as the use of an older or default signal value for longer than or equal to the pre-defined time interval.
Technical Paper

Design and Construction of a Test Rig for Assessing Tyre Characteristics at Rollover

2002-07-09
2002-01-2077
The paper presents a new test rig (named RuotaVia) composed basically by a drum (2,6 m diameter), providing a running contact surface for vehicle wheels. A number of measurements on either full vehicles or vehicle sub-systems (single suspension system or single tyre) can be performed. Tire characteristics influencing rollover can be assessed. The steady-state maximum loads are as follows: Radial: 100kN, tangential: 100kN, lateral (axial with respect to the drum): 100kN. The superstructure carrying a measuring hub can excite the wheel under test up to 20 Hz in lateral and vertical directions. The steer angle range is ± 25 deg, the camber range is ± 80 deg. The minimum eigenfrequency of the drum is higher than 90 Hz and its maximum tangential speed is 440 km/h.
Technical Paper

Relationship Between Driver Eyes-Off-Road Interval and Hazard Detection Performance Under Automated Driving

2016-04-05
2016-01-1424
Partially automated driving involves the relinquishment of longitudinal and/or latitudinal control to the vehicle. Partially automated systems, however, are fallible and require driver oversight to avoid all road hazards. Researchers have expressed concern that automation promotes extended eyes-off-road (EOR) behavior that may lead to a loss of situational awareness (SA), degrading a driver’s ability to detect hazards and make necessary overrides. A potential countermeasure to visual inattention is the orientation of the driver’s glances towards potential hazards via cuing. This method is based on the assumption that drivers are able to rapidly identify hazards once their attention is drawn to the area of interest regardless of preceding EOR duration. This work examined this assumption in a simulated automated driving context by projecting hazardous and nonhazardous road scenes to a participant while sitting in a stationary vehicle.
Technical Paper

B-Pillar Intrusion and Velocity Sensitivity Study for Side Impact Load Case

2011-10-06
2011-28-0109
In the early vehicle design stage math model, subsystems such as dummies, airbags and interior trims are generally not considered for structural evaluation. The objective of this study is to evaluate the B-pillar intrusion and velocity sensitivity in a side impact load case with respect to the dummies, airbags and interior trim. In this study four different vehicles were used to understand the B-pillar intrusion and velocity sensitivity trends. US NCAP lateral impact load case is used in this study. Five side impact load case analyses iterations, with different combinations of subsystems, were completed. Dummy inertia and interior trims play an important role for B-Pillar intrusion and velocity in side impact load case (USLINCAP). If the dummy and interior trim is not well defined in the CAE model, higher B-pillar intrusion and velocity will be predicted. This could vary from 10 to 25 %.
Technical Paper

Effects of Wind Speed and Longitudinal Direction on Fire Patterns from a Vehicle Fire in a Compact Car

2017-03-28
2017-01-1353
This paper compares the material consumption and fire patterns which developed on four nearly identical compact sedans when each was burned for exactly the same amount of time, but with different wind speed and direction during the burns. This paper will also compare the effects of environmental exposure to the fire patterns on the vehicles. The burn demonstrations were completed at an outdoor facility in southeast Michigan on four late model compact sedans. The wind direction was controlled by placing the subject vehicle with either the front facing into the wind, or rear facing into the wind. Two of the burns were conducted when the average observed wind speed was 5-6kph and two of the burns were conducted at an average observed wind speed of 19kph.
Technical Paper

Modeling of Pressure Wave Reflection from Open-Ends in I.C.E. Duct Systems

2010-04-12
2010-01-1051
In the most elementary treatment of plane-wave reflection at the open end of a duct system, it is often assumed that the ends are pressure nodes. This implies that pressure is assumed as a constant at the open end termination and that steady flow boundary condition is supposed as instantaneously established. While this simplifying assumption seems reasonable, it does not consider any radiation of acoustic energy from the duct into the surrounding free space; hence, an error in the estimation of the effects of the flow on the acoustical response of an open-end duct occurs. If radiation is accounted, a complicated three-dimensional wave pattern near the duct end is established, which tends to readjust the exit pressure to its steady-flow level. This adjustment process is continually modified by further incident waves, so that the effective instantaneous boundary conditions which determine the reflected waves depend on the flow history.
Technical Paper

Multi-Physics Simulations of Ice Shedding from Wind Turbines

2023-06-15
2023-01-1479
Wind turbines in cold climates are likely to suffer from icing events, deteriorating the aerodynamic performances of the blades and decreasing their power output. Continuous ice accretion causes an increase in the ice mass and, consequently, in the centrifugal force to which the ice shape is subjected. This can result in the shedding of chunks of ice, which can jeopardize the aeroelastic properties of the blade and, most importantly, the safety of the surrounding people and of the wind turbine structure itself. In this work, ice shedding analysis is performed on a quasi-3D, multi-step ice geometry accreted on the NREL 5MW reference wind turbine. A preliminary investigation is performed by including the presence of an ice protection system to decrease the adhesion surface of the ice on the blade. A reference test case with a simple geometry is used as verification for the correct implementation of the procedure.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Technical Paper

A Three-Dimensional Level-Set Front Tracking Technique for Automatic Multi-Step Simulations of In-Flight Ice Accretion

2023-06-15
2023-01-1467
This paper presents a novel fully-automatic remeshing procedure, based on the level-set method and Delaunay triangulation, to model three-dimensional boundary problems and generate a new conformal body-fitted mesh. The proposed methodology is applied to long-term in-flight ice accretion, which is characterized by the formation of extremely irregular ice shapes. Since ice accretion is coupled with the aerodynamic flow field, a multi-step procedure is implemented. The total icing exposure time is subdivided into smaller time steps, and at each time step a three-dimensional body-fitted mesh, suitable for the computation of the aerodynamic flow field around the updated geometry, is generated automatically. The methodology proposed can effectively deal with front intersections, as shown with a manufactured example.
Technical Paper

Investigation of the Influence of Aero-Thermal Non-equilibrium Conditions of an SLD Cloud on Airfoil Icing

2023-06-15
2023-01-1406
This study examines the impact of slip in aero-thermal conditions of supercooled large droplets (SLD) produced in an Icing Wind Tunnel (IWT) on the ice accretion characteristics. The study identifies potential biases in the SLD model development based on IWT data and numerical predictions that assume the SLD to be in aerothermal equilibrium with the IWT airflow. To obtain realistic temperature and velocity data for each droplet size class in the test section of the Braunschweig Icing Wind Tunnel (BIWT), a Lagrangian droplet tracking solver was used within a Monte Carlo framework. Results showed that SLDs experience considerable slips in velocity and temperature due to their higher inertia and short residence time in the Braunschweig IWT. Large droplets were found to be warmer and slower than the flow in the test section, with larger droplets experiencing larger aerothermal slips.
Technical Paper

CFD Modeling of Impinging Sprays Under Large Two-Stroke Marine Engine-Like Conditions

2022-03-29
2022-01-0493
To improve the combustion and emission characteristics of the large-bore marine engines, the spray is usually designed as an inter-spray impingement to promote the fuel-air mixing process, which implies frequent droplet collisions. Properly describing the collision dynamics of liquid droplets has been of interest in the field of spray modeling for marine engine applications. In this context, this work attempts to develop an accurate and efficient methodology for modeling impinging sprays under engine-like conditions. Experimental validations in terms of spray penetration and morphology are initially carried out at different operating conditions considering the parametric variations of ambient temperature and pressure, where the measurements are performed on a large-scale constant volume chamber with two symmetrical injectors.
Technical Paper

Novel Framework for the Robust Optimization of the Heat Flux Distribution for an Electro-Thermal Ice Protection System and Airfoil Performance Analysis

2023-06-15
2023-01-1392
We present a framework for the robust optimization of the heat flux distribution for an anti-ice electro-thermal ice protection system (AI-ETIPS) and iced airfoil performance analysis under uncertain conditions. The considered uncertainty regards a lack of knowledge concerning the characteristics of the cloud i.e. the liquid water content and the median volume diameter of water droplets, and the accuracy of measuring devices i.e., the static temperature probe, uncertain parameters are modeled as uniform random variables. A forward uncertainty propagation analysis is carried out using a Monte Carlo approach. The optimization framework relies on a gradient-free algorithm (Mesh Adaptive Direct Search) and three different problem formulations are considered in this work. Two bi-objective deterministic optimizations aim to minimize power consumption and either minimize ice formations or the iced airfoil drag coefficient.
Technical Paper

ANNIE, a Tool for Integrating Ergonomics in the Design of Car Interiors

1999-09-28
1999-01-3372
In the ANNIE project - Applications of Neural Networks to Integrated Ergonomics - BE96-3433, a tool for integrating ergonomics into the design process is developed. This paper presents some features in the current ANNIE as applied to the design of car interiors. A variant of the ERGOMan mannequin with vision is controlled by a hybrid system for neuro-fuzzy simulation. It is trained by using an Elite system for registration of movements. An example of a trajectory generated by the system is shown. A fuzzy model is used for comfort evaluation. An experiment was performed to test its feasibility and it showed very promising results.
X