Refine Your Search

Topic

Author

Search Results

Journal Article

Development of γ′-Fe4N Phase Control Technology and Low-Carbon Alloy Steel for High-Strength Nitrided Gear

2015-04-14
2015-01-0519
A new nitriding technology and material technology have been developed to increase the strength of microalloyed gears. The developed nitriding technology makes it possible to freely select the phase composition of the nitride compound layer by controlling the treatment atmosphere. The treatment environment is controlled to exclude sources of supply of [C], and H2 is applied as the carrier gas. This has made it possible to control the forward reaction that decomposes NH3, helping to enable the stable precipitation of γ′-phase, which offers excellent peeling resistance. A material optimized for the new nitriding technology was also developed. The new material is a low-carbon alloy steel that makes it possible to minimize the difference in hardness between the compound layer and the substrate directly below it, and is resistant to decline in internal hardness due to aging precipitation in the temperature range used in the nitriding treatment.
Journal Article

Effect of Surface Heat Treatment on Corrosion-Related Failure of the Suspension Spring

2015-04-14
2015-01-0518
In this research, a new wire material made using surface-reforming heat treatment was developed in order to enhance the corrosion fatigue resistance of suspension springs. The aim of surface reforming is to improve hydrogen embrittlement characteristics through grain refinement and to improve crack propagation resistance by partial softening of hardness. The grain refinement method used an α'→γ reversed transformation by rapid short-term heating in repeated induction heating and quenching (R-IHQ) to refine the crystal grain size of SAE 9254 steel spring wire to 4 μm or less. In order to simultaneously improve the fatigue crack propagation characteristics, the possibility of reducing the hardness immediately below the spring surface layer was also examined. By applying contour hardening in the second IHQ cycle, a heat affected zone (HAZ) is obtained immediately below the surface.
Journal Article

Development of Improved Method for Magnetically Formed Decorative Painting

2014-11-11
2014-32-0045
Currently, there is a growing demand for application of plastic coverings for motorcycles in the market. Accordingly, decorative features for plastic coverings are increasingly important to enhance the attractiveness of exterior designs of those motorcycles. Under these circumstances, the magnetically formed decorative painting had been adopted to a mass-production model sold in Thailand in 2008. Magnetically formed decorative painting is a method in which the design patterns are formed by painting a material that contains flakes movable along with magnetic fields, while applying magnetic sheets in the ornamenting design shapes underneath the part being painted. It offers a three-dimensional appearance even though its surface has no protrusions or indentations. The degree of three-dimensionality on the paint surface appearance was defined as “plasticity” [1] (a term used in pictorial arts).
Journal Article

Study of Effects of Residual Stress on Natural Frequency of Motorcycle Brake Discs

2014-11-11
2014-32-0053
In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress.
Journal Article

Development of State of the Art Compact and Lightweight Thermoelectric Generator Using Vacuum Space Structure

2015-04-14
2015-01-1691
Exhaust heat recovery units that use a thermoelectric element generate electricity by creating a temperature difference in the thermoelectric element by heating one side and cooling the other side of the thermoelectric circuit (module). In this case, the general structure does not directly join the thermoelectric module with the heat sink, and instead presses the thermoelectric module against the heat sink using bolts or other means in order to prevent thermoelectric element damage due to the difference in linear expansion between the cooled and heated sides of the thermoelectric module. However, this poses the issues associated with a complex, heavy and expensive structure. Therefore, a new vacuum space structure was devised that houses the thermoelectric module in a vacuum chamber and presses the module against the heat sink using atmospheric pressure.
Journal Article

The Thermal and Aerodynamic Development of a Cooling and Heat Resistance Package for a New Hybrid Sports Car

2015-04-14
2015-01-1526
A sports car exhibits many challenges from an aerodynamic point of view: drag that limits top speed, lift - or down force - and balance that affects handling, brake cooling and insuring that the heat exchangers have enough air flowing through them under several vehicle speeds and ambient conditions. All of which must be balanced with a sports car styling and esthetic. Since this sports car applies two electric motors to drive front axle and a high-rev V6 turbo charged engine in series with a 9-speed double-clutch transmission and one electric motor to drive rear axle, additional cooling was required, yielding a total of ten air cooled-heat exchangers. It is also a challenge to introduce cooling air into the rear engine room to protect the car under severe thermal conditions. This paper focuses on the cooling and heat resistance concept.
Journal Article

Development of a New Pressure Measurement Technique and PIV to Validate CFD for the Aerodynamics of Full-scale Vehicles

2016-04-05
2016-01-1623
In the early stages of aerodynamic development of commercial vehicles, the aerodynamic concept is balanced with the design concept using CFD. Since this development determines the aerodynamic potential of the vehicle, CFD with high accuracy is needed. To improve its accuracy, spatial resolution of CFD should be based on flow phenomenon. For this purpose, to compare aerodynamic force, pressure profile and velocity vector map derived from CFD with experimental data is important, but there are some difficulties to obtain pressure profile and velocity vector map for actual vehicles. At the point of pressure measurement for vehicles, installation of pressure taps to the surface of vehicle, i.e., fuel tank and battery, is a problem. A new measurement method developed in this study enables measurement of surface pressure of any desired points. Also, the flexibility of its shape and measuring point makes the installation a lot easier than the conventional pressure measurement method.
Journal Article

Application of Rapid Heat and Cool Molding to High Strength Outer Parts without Painting Treatment

2016-11-08
2016-32-0024
Glass fiber reinforced plastic of polyamide is applied as one of the materials used for the high strength exterior parts of a motorcycle, such as a rear grab rail or a carrier, to which both strength and good exterior appearance are required. However, Glass Fiber reinforced Polypropylene (PPGF), which is relatively inexpensive material, has a property that the contained glass fibers are prone to be exposed at the surface and, therefore, the requirements for good appearance are hardly met by using PPGF. In this study, Heat and Cool molding method (H&C molding) was employed to realize a cost reduction by using PPGF yet without applying painting process, and the established method was applied to mass production while fulfilling the requirements for a good exterior appearance. In H&C molding, the metal molds are heated up by steam and cooled down by water after molding.
Technical Paper

Vibrational Analysis Method on High-frequency Electric-drive Motor Noise

2020-04-14
2020-01-0463
When a vehicle is cruising, unpleasant noise in the 4 to 5 KHz high-frequency band can be heard at the center of all seats in the vehicle cabin. In order to specify the source of this noise, the correlation between the noise and airborne noise from the outer surface of the transmission was determined, and transfer path analysis was conducted for the interior of the transmission. The results indicated that the source of the noise was the 0th-order breathing mode specific to the drive motor. To make it possible to predict this at the desk, a vibrational analysis method was proposed for drive motors made up of laminated electrical steel sheets and segment-type coils. Material properties data for the electrical steel sheets and coils was employed in the drive motor vibrational analysis model without change. The shapes of the laminated electrical steel sheets and coils were also accurately modeled.
Journal Article

Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid

2011-04-12
2011-01-1335
Simulation was employed to estimate the fuel economy enhancement from the application of an exhaust heat recovery system using a thermoelectric generator (TEG) in a series hybrid. The properties of the thermoelectric elements were obtained by self-assessment and set as the conditions for estimating the fuel economy. It was concluded that applying exhaust system insulation and forming the appropriate combination of elements with differing temperature properties inside the TEG could yield an enhancement of about 3% in fuel economy. An actual vehicle was also used to verify the calculation elements in the fuel economy simulation, and their reliability was confirmed.
Technical Paper

Application of Aluminum for Automobile Chassis Parts

1991-02-01
910554
Several processes, such as casting, forging, and pressing, were used in the manufacturing of the Honda NSX's aluminum chassis. For casting, a high grade method which utilizes program control of mold temperature was developed and put into practical use. For optimum forging, a selection of cold and hot processes were investigated and a process to save energy during processing was pursued. As a result, an overall weight reduction of approximately 50% was achieved.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Journal Article

In-cylinder Optical Investigation of Combustion Behavior on a Fast Injection Rate Diesel Common Rail Injector

2011-08-30
2011-01-1821
The field of diesel combustion research is producing numerous reports on studies of premixed combustion, which promises simultaneous reduction of both NOx and soot, in order to meet increasingly stringent regulations on harmful emissions from automobiles. However, although premixed combustion can simultaneously reduce both NOx and soot, certain issues have been pointed out, including the fact that it emits greater quantities of unburned HC and CO gases and the fact that it limits the operating range. Furthermore, this combustion method sets the ignition delay longer with the aim of promoting the mixing of fuel and air. This raises issues with the product due to the combustion instability and sensitivity to the uneven fuel properties that are found on the market, the capability of the engine response under transient conditions, the deterioration in combustion noise, and so on.
Journal Article

Research on Clogging Mechanism of Multilayered Fuel Filters and Extension of Filter Life Span in Ethanol Blended Fuel

2011-11-08
2011-32-0570
Recently, the use of ethanol blended fuel is growing worldwide. Therefore, there is increasing needs for addressing issues relating to ethanol blended fuel use in gasoline engine fuel supply systems. In this paper, we focused on one of such issues, which is the reduced life of a multi-layered fuel filter used at inlet side of a fuel pump when it is used with ethanol blended fuel. In this study, we clarified that ethanol blended fuel tends to disperse dust particles contained in fuel to a greater extent than gasoline, and that it has a mechanism to accelerate clogging by concentrating the clogging only on the finest layer of the multi-layered filter. Also, in the process of clarifying this principle, we confirmed that dust particles dispersed by ethanol are coagulated when passing through the filter layers.
Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Technical Paper

Development of Compact Fuel Pump Module for Motorcycles

2008-09-09
2008-32-0039
A compact, low-cost fuel pump module has been developed for use in motorcycles with a small-displacement engine. Various considerations are given to make the module as compact as possible. The pump motor, which is one of the major component parts, is down-sized specifically for applications to small-displacement engines. The pressure regulator uses a simple construction consisting only of a ball and a spring without a diaphragm. Especially noteworthy is that with the volume reduced by approximately 40% from the conventional pressure regulator while using the construction that reduces self-excited vibrations caused by fuel pressure pulsations, the pressure regulator contributes significantly to the down-sizing and cost reduction of the module. Furthermore, the down-sized module remarkably reduces the size of fuel pump mount surface, allowing a modification from the flat-surface sealing to the radial sealing.
Technical Paper

Development of a Small-Sized Multilayer Fuel Tank for Motorcycles and ATVs Complying with EPA Gasoline Permeation Controls

2008-09-09
2008-32-0041
As a result of recent EPA (U.S. Environmental Protection Agency) gasoline permeation control regulations, the fuel tanks on motorcycles and ATVs (All-Terrain Vehicles) are required to change to lower gasoline permeation performance on 2008 models. Therefore, we determined to use a multilayer plastic fuel tank. There are some molding issues that are peculiar to motorcycle and ATV fuel tanks. First, when the insert is blow molded, there is a reduction in welding strength. Second, peeling of the adhesion occurs on impact in the inserted parts. Third, saddle shapes with large ductility deformation are easy to be punctured during molding. Finally, the appearance of the fuel tank is not acceptable. In order to address the first issue, the welding performance, the drawdown of parison and the melting damage of insert parts were balanced, focusing attention to the temperatures of the parison and the insert.
Technical Paper

Development of Compound Coating that Reduces Permeation of Chloride Ion in Salty Water for Hexavalent-Chromium-Free Metal Gasket for PWC Engines

2008-09-09
2008-32-0047
A hexavalent-chromium-free metal gasket for PWC engines was developed to correspond to the ELV (End of Life Vehicle) directive. In order to enhance the adhesive property, the ion capture to trap the chloride ion, an anti-rust pigment to reform the chemical coating, and an inorganic sealer to stop the passage of chloride ion were added to the adhesive and rubber raw material. A good adhesive property and rubber physical property was obtained through the addition of an anticorrosive pigment. The rubber vulcanization condition in the manufacturing process was reviewed. As a result, without modifying the current compound coating line for mass-production, a gasket with a blistering resistance more than hexavalent chromium conversion coating equivalence and coating adhesion was developed when using salt water for engine cooling.
Technical Paper

Introduction of a New Method of Solving Wear Problems Caused by the Swing Motion Occurring between the Roller and the Sliding Contact Surface

2010-04-12
2010-01-1055
In an attempt to decrease the amount of CO2 emitted by engines and yet improve engine output power, various approaches to the development of variable valve-lift mechanisms and the application of direct fuel injection and supercharger mechanisms are rapidly gaining popularity. In the case of the swing motion which takes place in variable valve-lift mechanisms, the relative speed between the two components reaches zero at the location where the load is high and the oil film tends to break, thereby leading to wear. Furthermore, the use of a supercharger and a direct injection device generates soot, which promotes further wear. Therefore establishing a reliable method for estimating wear has become a pressing issue. Wear problems caused by the swing motion occur during boundary lubrication, and we have devised a solution for them.
Technical Paper

Development of High-Heat-Resistant High-Nitrogen Containing Austenitic Stainless Steel for Exhaust Gasket

2004-03-08
2004-01-0890
SUS301-EH is widely used as a material for exhaust system gaskets, however, at temperatures in excess of 400°C, it can not be used as gas-seal ability of the material declines due to its reduced hardness. The following methods were found to be effective in controlling the softening of stainless steel at high temperatures: (1) The addition of a nitrogen component; (2) Stabilization of the austenite structure; (3) The addition of a molybdenum component. The addition of 0.5% nitrogen to austenitic stainless steel containing molybdenum has enabled the speed of softening at high temperatures to be significantly reduced, due to strain aging by solid nitrogen below 600°C and the combined effects of precipitation hardening and control of growth of recrystallized grains through the precipitation of fine Cr2N on the dislocations and the grain boundary above 600°C.
X