Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Development of a New Pressure Measurement Technique and PIV to Validate CFD for the Aerodynamics of Full-scale Vehicles

2016-04-05
2016-01-1623
In the early stages of aerodynamic development of commercial vehicles, the aerodynamic concept is balanced with the design concept using CFD. Since this development determines the aerodynamic potential of the vehicle, CFD with high accuracy is needed. To improve its accuracy, spatial resolution of CFD should be based on flow phenomenon. For this purpose, to compare aerodynamic force, pressure profile and velocity vector map derived from CFD with experimental data is important, but there are some difficulties to obtain pressure profile and velocity vector map for actual vehicles. At the point of pressure measurement for vehicles, installation of pressure taps to the surface of vehicle, i.e., fuel tank and battery, is a problem. A new measurement method developed in this study enables measurement of surface pressure of any desired points. Also, the flexibility of its shape and measuring point makes the installation a lot easier than the conventional pressure measurement method.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Journal Article

In-cylinder Optical Investigation of Combustion Behavior on a Fast Injection Rate Diesel Common Rail Injector

2011-08-30
2011-01-1821
The field of diesel combustion research is producing numerous reports on studies of premixed combustion, which promises simultaneous reduction of both NOx and soot, in order to meet increasingly stringent regulations on harmful emissions from automobiles. However, although premixed combustion can simultaneously reduce both NOx and soot, certain issues have been pointed out, including the fact that it emits greater quantities of unburned HC and CO gases and the fact that it limits the operating range. Furthermore, this combustion method sets the ignition delay longer with the aim of promoting the mixing of fuel and air. This raises issues with the product due to the combustion instability and sensitivity to the uneven fuel properties that are found on the market, the capability of the engine response under transient conditions, the deterioration in combustion noise, and so on.
Journal Article

Research on Clogging Mechanism of Multilayered Fuel Filters and Extension of Filter Life Span in Ethanol Blended Fuel

2011-11-08
2011-32-0570
Recently, the use of ethanol blended fuel is growing worldwide. Therefore, there is increasing needs for addressing issues relating to ethanol blended fuel use in gasoline engine fuel supply systems. In this paper, we focused on one of such issues, which is the reduced life of a multi-layered fuel filter used at inlet side of a fuel pump when it is used with ethanol blended fuel. In this study, we clarified that ethanol blended fuel tends to disperse dust particles contained in fuel to a greater extent than gasoline, and that it has a mechanism to accelerate clogging by concentrating the clogging only on the finest layer of the multi-layered filter. Also, in the process of clarifying this principle, we confirmed that dust particles dispersed by ethanol are coagulated when passing through the filter layers.
Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Technical Paper

Introduction of a New Method of Solving Wear Problems Caused by the Swing Motion Occurring between the Roller and the Sliding Contact Surface

2010-04-12
2010-01-1055
In an attempt to decrease the amount of CO2 emitted by engines and yet improve engine output power, various approaches to the development of variable valve-lift mechanisms and the application of direct fuel injection and supercharger mechanisms are rapidly gaining popularity. In the case of the swing motion which takes place in variable valve-lift mechanisms, the relative speed between the two components reaches zero at the location where the load is high and the oil film tends to break, thereby leading to wear. Furthermore, the use of a supercharger and a direct injection device generates soot, which promotes further wear. Therefore establishing a reliable method for estimating wear has become a pressing issue. Wear problems caused by the swing motion occur during boundary lubrication, and we have devised a solution for them.
Technical Paper

Influence of a Fast Injection Rate Common Rail Injector for the Spray and Combustion Characteristics of Diesel Engine

2011-04-12
2011-01-0687
For reduction of NOx and soot emission with conventional diesel diffusion combustion, the authors focused on enhancement of the rate of injection (hereafter referred to as RoI) to improve air availability, thus enhancing the fuel distribution and atomization. In order to increase opening ramp of the RoI (hereafter referred to as fast injection rate), a hydraulic circuit was improved and nozzle geometries were optimized to make the greatest use of the advantages of the hydraulic circuit. Two different common rail injectors were prepared for this research. One is a mass production-type injector with piezo actuator that achieved the EURO-V exhaust gas emission standards, and the other is a prototype injector equipped with the new hydraulic circuit. The nozzle needle of the prototype injector is directly actuated by high-pressure fuel from common rail to improve the RoI.
Technical Paper

Influence of Ductility Ingredients of Structural Adhesives on Fracture Energy under Static Mixed-Mode Loading

2017-03-28
2017-01-0473
In recent years, adhesive bonding is increasingly being applied in the construction of vehicle frames in order to improve body stiffness and crash performance. Regarding crash performance, the behavior of impacted components is affected by the fracture energy value of the adhesive. However, the relationship between the ductility and fracture energy values under mixed-mode loadings has not been sufficiently evaluated. In this paper, the fracture energy of three structural adhesives in a static mixed-mode loading using Double Cantilever Beam (DCB) specimens is presented. To derive the fracture energy values, the Compliance Based Beam Method (CBBM) was used, which allowed for precise determination of fracture energy values. Static mixed-mode loading tests were performed in six configurations of mixed-mode loading, ranging from pure peel mode state to almost pure shear mode state.
Technical Paper

Engine Seizure Monitoring System Using Wear Debris Analysis and Particle Measurement

2016-04-05
2016-01-0888
Several attempts have been reported in the past decade or so which measured the sizes of particles in lubricant oil in order to monitor sliding conditions (1). Laser light extinction is typically used for the measurement. It would be an ideal if only wear debris particles in lubricant oil could be measured. However, in addition to wear debris, particles such as air bubbles, sludge and foreign contaminants in lubricant oil are also measured. The wear debris particles couldn't have been separated from other particles, and therefore this method couldn't have been applied to measurement devices for detection when maintenance service is required and how the wear state goes on. It is not possible to grasp the abnormal wear in real time by the conventional techniques such as intermittent Ferro graphic analysis. In addition, it is no way to detect which particle size to be measured by the particle counter alone.
Technical Paper

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-04-16
2012-01-0365
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO₃ (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn⁴+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/γ-Al₂O₃ (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO₂).
Technical Paper

Study of Piston Pin Noise of Semi-Floating System

2012-04-16
2012-01-0889
This paper summarizes the piston pin noise mechanism and show the way to reduce noise level of semi-floating system. A mechanism of piston pin noise of semi-floating system was clarified by measurement of piston and piston pin behavior and visualization of engine oil mist around piston and piston pin. Piston and piston pin behavior was measured by accelerometer and eddy current type gap sensor with linkage system at the actual engine running condition. Engine oil behavior was visualized and measured its flow vector by Particle Tracking Velocimetry (PTV). For PTV, engine oil mist particle image was taken by high speed camera with fiber scope attached to linkage system. From themeasurement, it was cleared that engine oil doesn't reach to piston hole from undersurface of piston land and come rushing out from piston broach via groove. The result shows that lacking of engine oil between piston and piston pin makes noise larger.
Technical Paper

Study on Ignition Timing Control for Diesel Engines Using In-Cylinder Pressure Sensor

2006-04-03
2006-01-0180
As technologies for simultaneously maintaining the current high thermal efficiency of diesel engines and reducing particulate matter (PM) and nitrogen oxide (NOX) emissions, many new combustion concepts have been proposed, including premixed charge compression ignition (PCCI) and low-temperature combustion[1]. However, it is well known that since such new combustion techniques precisely control combustion temperatures and local air-fuel ratios by varying the amount of air, the exhaust gas recirculation (EGR) ratio and the fuel injection timing, they have the issues of being less stable than conventional combustion techniques and of performance that is subject to variance in the fuel and driving conditions. This study concerns a system that addresses these issues by detecting the ignition timing with in-cylinder pressure sensors and by controlling the fuel injection timing and the amount of EGR for optimum combustion onboard.
Technical Paper

Design of High Performance Coated GPF with 2D/3D Structure Analysis

2019-04-02
2019-01-0977
In recent years along with stringent the regulations, vehicles equipped with gasoline particulate filter (GPF) have started to launch. Compared to bare GPF, coated GPF (cGPF) requires not only PN filtration efficiency, low pressure drop, but also purification performance. In the wall flow type cGPF having a complicated the pore shape, the pore structure further irregularly changes depending on the coated state of the catalyst, so it is difficult to understand the matter of in-wall. In order to advance of cGPF function, it was researched that revealing the relevance between pore structure change in the wall and GPF function. Therefore, to understand the catalyst coated state difference, cGPF of several coating methods were prepared, and their properties were evaluated by various analyses, and performance was tested.
Technical Paper

Numerical Modeling Study of Detailed Gas Diffusivity into Catalyst Washcoat for Lean NOx Catalyst

2019-04-02
2019-01-0993
To evaluate the relationship between the exhaust gas purification performance and the catalyst pore properties related to gas diffusion, an elementary reaction model was combined with gas diffusion into catalyst pores, referred to as the pseudo-2D gas diffusion/reaction model. It was constructed for Pt/Al2O3 + CeO2 catalyst as lean NOx catalyst. The gas diffusion was described as macro pore diffusion between the catalyst particles and meso pore diffusion within the particle. The kinetic model was composed of 26 reactions of NO/CO/O2 chemistry including 17 Pt/Al2O3 catalyst reactions and 9 CeO2 reactions. Arrhenius parameters were optimized using activity measurement results from various catalysts with various pore properties, meso pore volume and diameter, macro pore volume and diameter, particle size, and washcoat thickness. Good agreement was achieved between the measured and calculated values.
Technical Paper

Development of Aluminum Powder Metal Composite Material Suitable for Extrusion Process used for Cylinder Sleeves of Internal Combustion Engines

2014-04-01
2014-01-1002
There are a couple of ways to manufacture aluminum cylinder blocks that have a good balance between productivity and abrasion resistance. One of them is the insert-molding of a sleeve made of PMC (Powder Metal Composite) by the HPDC (High Pressure Die Casting) method. However, in this method, cracks are apt to occur on the surface when the PMC sleeve is extruded and that has been a restriction factor against higher extrusion speed. The authors attempted to raise this extrusion temperature by eliminating the Cu additive process from the aluminum alloy powder in order to raise its melting point by approximately 50 °C. This enabled the wall of the extruded sleeve to be thinner and the extrusion speed to be higher compared to those of a conventional production method while avoiding the occurrence of surface cracks.
Technical Paper

Prediction Method of Snow Ingress Amount into the Engine Air Intake Duct Employing LES and Detailed Snow Accumulation Model

2019-04-02
2019-01-0805
When a vehicle is driven in snowy conditions, if a proper air intake design is not adopted, the snow lifted by the leading vehicles may penetrate into the engine air intake, in case of large snow ingress amount, causing a power drop. The evaluation of such risk for the intake is carried out through climatic wind tunnel tests, which cannot be conducted at the early stage of vehicle development when the prototype vehicle does not exist. In order to study that risk prior to the prototype vehicle delivery, computational fluid dynamics (CFD) which predicts the snow ingress amount accurately was established with taking into account unsteady air flow and snow accumulation. Large Eddy Simulation (LES) was used to reproduce the unsteady flow field, leading to a good agreement of the flow downstream from the snow generator with the experimental one measured by Particle Image Velocimetry (PIV). As for the snow particle behavior model, the Lagrangian method was chosen.
X