Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

FPGA-Based Development for Sophisticated Automotive Embedded Safety Critical System

2014-04-01
2014-01-0240
As software (SW) becomes more and more an important aspect of embedded system development, project schedules are requiring the earlier development of software simultaneously with hardware (HW). In addition, verification has increasingly challenged the design of complex mixed-signal SoC products. This is exacerbated for automotive safety critical SoC products with a high number of analogue interfaces (sensors and actuators) to the physical components such as an airbag SoC chipset. Generally, it is widely accepted that verification accounts for around 70% of the total SoC development. Since integration of HW and SW is the most crucial step in embedded system development, the sooner it is done, the sooner verification can begin. As such, any approaches which could allow verification and integration of HW/SW to be deployed earlier in the development process and help to decrease verification effort, (e.g.: accelerate verification runs) are of extreme interest.
Technical Paper

Mathematical Modeling of the Longitudinal Motion of a Vehicle with a Continuously Variable Transmission

2021-09-21
2021-01-1237
The Continuously Variable Transmission (CVT) is a widely adopted transmission system. The operation of a CVT is simple, but successfully foretelling the longitudinal motion of a vehicle that utilizes this transmission is sophisticated. As a result, different vehicles taking part in BAJA-SAE competitions were developed using various strategies to model the vehicle’s longitudinal dynamics and CVT operation. This article aims to provide a tool for obtaining a quantitative estimate of the longitudinal performance of a CVT equipped vehicle and for the selection of an optimal drive-train gear ratio for such a vehicle. To this end, this article proposes a novel, relatively simple, and reasonably accurate mathematical approach for modeling the longitudinal motion of a vehicle utilizing a CVT, which was developed by a novel integration of existing vehicle dynamics concepts.
Technical Paper

A Simplified Computational Fluid Dynamics Approach for Optimizing a Continuously Variable Transmission Casing

2021-09-21
2021-01-1240
The Continuously Variable Transmission (CVT) is a popular form of automotive transmission that uses friction between a belt and pulley to transmit power. Due to the sliding and other losses associated with the belt, power is lost in the form of heat, which must be dissipated to enhance the belt’s life. The task of heat dissipation is, however, complicated by the use of a CVT casing, which serves to protect the transmission from mud, debris, etc. Consequently, the design of an optimum CVT casing for efficient cooling is a challenging task. Experimental approaches or 3D numerical simulation approaches to tackling such problems are either involved or time-consuming or both. This article discusses a novel and simplified strategy for optimizing a CVT casing for maximum heat removal, using computational fluid dynamics (CFD). The rotating pulleys are approximated as heated, rotating cylinders inside a two-dimensional flow domain of the casing.
Technical Paper

Design and Analysis of Modified Radiator Fins to Improve Overall Cooling Efficiency

2020-09-15
2020-01-2029
Internal Combustion engines have been a significant component of the industrial development in the 20th and 21st centuries. However, the high working temperatures cause extensive wear and tear among the parts and results in a loss in fuel efficiency and ultimately seize the engine. To prevent this, there was a need for a cooling system. The current systems cool the vehicle's engine by transferring heat from the engine to the coolant/water in the water jacket from where it reaches the radiator via tubes, and the hot temperature coolant is cooled. This article proposes a change in the design of radiator fins to improve the overall cooling efficiency of such systems. As radiator fins are instrumental in the heat transfer process, a design change in them results in substantial changes in the output efficiency results. The central concept that is utilized is to increase the surface area of the fins, which would increase the rate of heat loss from the pipes.
Technical Paper

Performance Analysis and Economic Feasibility of Fuel Cell Vehicles: A Perspective Review

2020-09-15
2020-01-2256
Automotive industries have been a significant contributor to global warming over the last 30 years. Due to the excessive increase in environmental degradation, research has been conducted extensively in various fields to explore sustainable alternatives to IC engines. Therefore, heavy emphasis is being laid on Battery-run Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCEVs). BEVs are facing their own set of challenges when it comes to production, recharge time, battery capacity and net carbon footprint, among other issues. However, FCEVs offer certain new opportunities for the automobile sector to foray into a sustainable space. This study aims to review the performance of fuel cell vehicles against the parameters of economic feasibility, technological feasibility, energy efficiency. Recent developments in fuel cell research have been discussed.
Journal Article

Electrochemical Characterization of Coated Self-Piercing Rivets for Magnesium Applications

2016-01-01
2015-01-9085
This work reports on measurement and analysis of the galvanic interaction between steel self-piercing rivets (SPRs) having several different surface conditions and magnesium alloy substrates under consideration for use in automotive structural assemblies. Rivet surface conditions included uncoated steel, conventional Zn-Sn barrel plating and variations of commercial aluminizing processes, including supplemental layers and sealants. Coating characteristics were assessed using open circuit potential (OCP) measurement, potentiodynamic polarization scanning (PDS), and electrochemical impedance spectroscopy (EIS). The degree of galvanic coupling was determined using zero-resistance ammeter (ZRA) and the scanning vibrating electrode technique (SVET), which also permitted characterization of galvanic current flows in situ.
Journal Article

External Biofidelity Evaluation of Pedestrian Leg-Form Impactors

2017-03-28
2017-01-1450
Current state-of-the-art vehicles implement pedestrian protection features that rely on pedestrian detection sensors and algorithms to trigger when impacting a pedestrian. During the development phase, the vehicle must “learn” to discriminate pedestrians from the rest of potential impacting objects. Part of the training data used in this process is often obtained in physical tests utilizing legform impactors whose external biofidelity is still to be evaluated. This study uses THUMS as a reference to assess the external biofidelity of the most commonly used impactors (Flex-PLI, PDI-1 and PDI-2). This biofidelity assessment was performed by finite element simulation measuring the bumper beam forces exerted by each surrogate on a sedan and a SUV. The bumper beam was divided in 50 mm sections to capture the force distribution in both vehicles. This study, unlike most of the pedestrian-related literature, examines different impact locations and velocities.
Journal Article

A Tool for Ensuring Consistent Occurrence Ranking in FMEAs

2008-04-14
2008-01-1427
In the automotive industry, FMEA occurrence ranking is made to a standard such as SAE J1739. The SAE J1739 standard, as does other comparative standards, provides numerical probability criteria to aid ranking. Problems arise when the part or system under analysis is new, and there is no field data to estimate the probability of failure occurrence. Attempts to use qualitative verbal criteria or to go by the “feel” often result in inconsistency or large variability across and within FMEA projects. This paper presents a case study in which this problem was solved by the development of a tool that enables consistent - and efficient - FMEA occurrence rankings. The tool takes input from the user in the form of multiple-choice answers and calculates the final solution.
Journal Article

Thermal Modeling of Power Steering System Performance

2008-04-14
2008-01-1432
Power steering systems provide significant design challenges. They are detrimental to fuel economy since most require the continuous operation of a hydraulic pump. This generates heat that must be dissipated by fluid lines and heat exchangers. This paper presents a simple one-dimensional transient model for power steering components. The model accounts for the pump power, heat dissipation from fluid lines, the power steering cooler, and the influence of radiation heat from exhaust system components. The paper also shows how to use a transient thermal model of the entire system to simulate the temperatures during cyclic operation of the system. The implications to design, drive cycle simulation, and selection of components are highlighted.
Journal Article

Active Roll and Stability Control

2008-04-14
2008-01-1457
Computer Simulation was extensively utilized in the design and development of the Active Roll Control (ARC) system on LandRover 4X4 vehicle. An ADAMS model was developed integrating the electronic controller, hydraulic activation and vehicle model into one system of various degrees of complexity. Simulation results not only correlated well with vehicle test results, but also provided invaluable design guidelines crucial for solving key stability issues and successful product launch.
Journal Article

Computer Simulation of Automotive Air Conditioning - Components, System, and Vehicle: Part 2

2008-04-14
2008-01-1433
In 1972, the first SAE paper describing the use of computer simulation as a design tool for automotive air conditioning was written by these authors. Since then, many such simulations have been used and new tools such as CFD have been applied to this problem. This paper reviews the work over that past 35 years and presents several of the improvements in the basic component and system models that have occurred. The areas where “empirical” information is required for model support and the value of CFD cabin and external air flow modeling are also discussed.
Journal Article

Brake Dynamometer Test Variability Part 2- Description of the Influencing Factors

2011-09-18
2011-01-2374
The ISO TC22/SWG2 - Brake Lining Committee established a task force to determine and analyze root causes for variability during dynamometer brake performance testing. SAE paper 2010-01-1697 “Brake Dynamometer Test Variability - Analysis of Root Causes” [1] presents the findings from the phases 1 and 2 of the “Test Variability Project.” The task force was created to address the issue of test variability and to establish possible ways to improve test-to-test and lab-to-lab correlation. This paper presents the findings from phase 3 of this effort-description of factors influencing test variability based on DOE study. This phase concentrated on both qualitative and quantitative description of the factors influencing friction coefficient measurements during dynamometer testing.
Journal Article

Advantages of the Alternative Method for Random Hardware Failures Quantitative Evaluation - a Practical Survey for EPS

2013-04-08
2013-01-0190
Two methods are allowed in ISO 26262-5 for hardware analysis of random hardware failures. The 1st method is called “Evaluation of Probabilistic Metric for random Hardware Failures”. The 2nd method is called “Evaluation of each cause of safety goal violation”. Advantages of the 2nd method during development of ASIL D Generation 3 Electric Power Steering are presented in this paper. A reliability analysis is one of the important prerequisite for the hardware analysis and this paper shows the best practice for hardware part failure rate estimation using industry standards such as IEC TR 62380. The equally important focus is on a diagnostic coverage of each safety mechanism with respect to residual faults and with respect to relevant dual/latent point faults because any safety design can either benefit from low failure rates or from high diagnostic coverage of safety mechanism to mitigate faults. FMEA is highly recommended by ISO 26262-5 as a part of hardware analysis.
Journal Article

Mobility and Energy Efficiency Analysis of a Terrain Truck

2013-04-08
2013-01-0672
While much research has focused on improving terrain mobility, energy and fuel efficiency of terrain trucks, only a limited amount of investigation has gone into analysis of power distribution between the driving wheels. Distribution of power among the driving wheels has been shown to have a significant effect on vehicle operating characteristics for a given set of operating conditions and total power supplied to the wheels. Wheel power distribution is largely a function of the design of the driveline power dividing units (PDUs). In this paper, 6×6/6×4 terrain truck models are analyzed with the focus on various combinations of PDUs and suspension systems. While these models were found to have some common features, they demonstrate several different approaches to driveline system design.
Journal Article

Synthesis of Linseed oil Biodiesel using a Non-Catalytic Supercritical Transesterification Process

2014-04-01
2014-01-1955
Due to high energy demand and limited availability of fossil fuels, the energy necessity becomes a point of apprehension as it results in hike of fuel prices. It is essential to develop renewable energy resources while considering the impact on environment. In the last decade, demand of alternative fuels has increased a lot. Therefore, researchers have already started working on the aim of developing a green fuel to overcome the future energy demand. And as we know that the biodiesel is generally prepared from the non-edible and renewable resources thus, it can be among the competitive alternative future fuels. Besides that, it does not require any prior engine modifications for its usual advantage among other alternative fuels while using it within certain boundaries. However, the process biodiesel production is in itself time consuming which increases the cost of production while decreasing the yield.
Journal Article

Comparative Tribological Investigation of Mahua Oil and its Chemically Modified Derivatives

2014-04-01
2014-01-0956
For the last decade, the lubricant industry has been trying to formulate biodegradable lubricants with technical characteristics superior to those based on petroleum. A renewable resource, mahua oil, is good alternative to mineral oil because of its environmentally friendly, non toxic and readily biodegradable nature. The triacylglycerol structure of mahua oil is amphiphilic in character that makes it an excellent candidate as lubricant and functional fluid. It is also very attractive for industrial applications that have potential for environmental contact through accidental leakage, dripping or generates large quantities of after-use waste materials requiring costly disposal. Vegetable oil in its natural form has limited use as industrial fluids due to poor thermo-oxidation stability, low temperature behavior and other tribochemical degrading processes.
Journal Article

Sensor Fusion as an Enabling Technology for Safety-critical Driver Assistance Systems

2010-10-19
2010-01-2339
Driver assistance systems are incorporating more and more advanced safety functions. As these functions have to react quickly and reliably in emergency situations with a false alarm rate close to zero a high integrity of the environmental perception is required. This elevated level of signal integrity can be achieved by data fusion, where the information of several, in general heterogeneous sensors is combined to obtain a better model of the environment in terms of accuracy, object integrity, object identity, etc. As an example, we demonstrate the power of sensor fusion by an automatic emergency brake (AEB) system whose environmental perception is based upon a video camera and a radar sensor. In particular we discuss the improvement of kinematic attributes such as object lateral distance as well as the object's confidence or probability of existence.
Technical Paper

The Interaction of Air Bags with Upper Extremities

1997-11-12
973324
Recently there has been a greater awareness of the increased risk of certain injuries associated with air bag deployment, especially the risks to small occupants, often women. These injuries include serious eye and upper extremity injuries and even fatalities. This study investigates the interaction of a deploying air bag with cadaveric upper extremities in a typical driving posture; testing concentrates on female occupants. The goals of this investigation are to determine the risk of upper extremity injury caused by primary contact with a deploying air bag and to elucidate the mechanisms of these upper extremity injuries. Five air bags were used that are representative of a wide range of air bag ‘aggressivities’ in the current automobile fleet. This air bag ‘aggressivity’ was quantified using the response of a dummy forearm under air bag deployment.
Technical Paper

Electrically Powered Hydraulic Steering Systems for Light Commercial Vehicles

2007-10-30
2007-01-4197
Electrically Powered Hydraulic Steering (EPHS) was developed in the early 90s and previously applied to vehicle segments B and C (small and medium-sized passenger cars). Till now more than 10 million vehicles are in the field. The advantages consist of the well known power density coming along with the flexible package. Value is added due to the consequent development and usage of electronic control realized in compact physical units. As a result key features for chassis control systems like controllability, high dynamic performance, and low energy consumption are achieved while maintaining mature and robust hydraulic components. Recent market requirements in other segments, e.g. Sport Utility Vehicles (SUV) and Light Commercial Vehicles (LCV) require higher powered motor pump units and lead to the decision to develop products in this direction.
X