Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimizing an Automotive HVAC System for Enhancement of Acoustic Comfort

2021-09-15
2021-28-0147
The Indian automotive industry is going through a rapid transformation phase. Regulatory emission norms such as, migration from BSIV to BSVI engine, increased adoption of μ-hybrid, full electric and autonomous cars are examples of such rapid transformation. The upgradation of internal combustion engines for compliance with new regulatory norms (e.g., from BSIV to BSVI) has caused a significant change in the automotive acoustic performance. As the powertrain system are being upgraded and getting quieter, the on-board Heating, Ventilation and Air-Conditioning system (HVAC) system emerges as one of the prominent noise sources which strongly influences overall refinement levels inside the cabin. This in turns is affecting overall feeling of passenger’s comfort. The HVAC system of an automobile is a compact and yet a complex system designed to provide thermal comfort inside the car cabin.
Technical Paper

Customized and Market Specific Thermal Robust Clutch System Solution

2021-09-21
2021-01-1239
The goal of reducing fuel consumption and CO2-Emission is leading to turbo-charged combustion engines that deliver high torque at low speeds (down speeding). To meet NVH requirements damper technologies such as DMF (Dual Mass Flywheel) are established, leading to reduced space for the clutch system. Specific measures need to be considered if switching over from SMF (Single Mass Flywheel) to DMF [8]. Doing so has an impact on thermal behavior of the clutch system, for example due to reduced and different distribution of thermal masses and heat transfer to the surroundings. Taking these trends into account, clutch systems within vehicle powertrains are facing challenges to meet requirements e.g. clutch life, cost targets and space limitation. The clutch development process must also ensure delivery of a clutch system that meets requirements taking boundary conditions such as load cycles and driver behavior into account.
Technical Paper

Sensitivity of LCA Bush Stiffness in Judder while Braking for Twist Blade Type Suspension in Passenger Cars

2021-09-22
2021-26-0513
This paper deals with specific NVH related issues attributed due to LCA bush stiffness and Brake rotor DTV. While the focus is on the cause of such vibration (judder while braking at 120 kmph), the presentation goes to the root-cause of judder and how various suspension/tire/brake components contribute to the generation/amplification of such vibration. Results are presented for twist blade types of vehicle suspensions, along with procedures that were developed specifically for this study and some of the actual case study. DTV-Disk thickness variation
Technical Paper

Development of a Rapid Vehicle Steering Cooling System Using Thermoelectrics

2021-09-22
2021-26-0517
Nowadays automotive cabin comfort has become a necessity rather than an optional feature, with customers demanding more comfort features. Thermal comfort becomes an essential part of this expectation. Since steering wheel is the first surface that the driver will touch once he enters the vehicle, maintaining thermal comfort of steering wheel becomes important, especially in tropical countries like India where a car parked in hot weather can get significantly warm inside. In this work, two design concepts for automotive steering wheel thermal control based on thermoelectric effect are depicted along with a detailed mathematical model. Thermoelectric coolers were selected for this purpose as it is solid state, compact & scalable solution to achieve rapid cooling rates. This was the desired feature expected from an integration standpoint in automotive architecture.
Technical Paper

Influence of Asymmetrical Design Parameter on Vehicle Pull During Brake Application

2021-09-22
2021-26-0354
The steering system of commercial vehicle is asymmetrical to left side and rightside, this causes vehicle pull during braking application. This directly affects the safety of the driver and vehicle ride & handling performance. In a similar way, the asymmetrical suspension parameter unintentionally set during vehicle assembly arealso major contributors for creating a vehicle pull. After application of brake force, the tire contact patch creates a moment about the kingpin axis. However, this moment generated is different on left and right-side due to asymmetrical design parameters resulting in vehicle deviation from its intended path. A large deviation may lead to on road accidents. Some of the major factors which are responsible for the vehicle pulling phenomenon are the asymmetrical steering system compliance, asymmetrical suspension geometry, tire, braking system, road camber etc.
Technical Paper

Digital Approach for Dynamic Balancing of Three Cylinder Gasoline Engine Crank-Train

2021-09-22
2021-26-0265
Because of ever increasing demand for more fuel efficient engines with lower manufacturing cost, compact design and lower maintenance cost, OEM’s prefer three cylinder internal combustion engine over four cylinder engine for same capacity, though customer demands NVH characteristics of a three cylinder engines to be in line with four cylinder engine. Crank-train balancing plays most vital role in NVH aspects of three cylinder engines. A three cylinder engine crankshaft with phase angle of 120 degrees poses a challenge in balancing the crank train. In three-cylinder engines, total sum of unbalanced inertia forces occurring in each cylinder will be counterbalanced among each other. However, parts of inertia forces generated at No.1 and No. 3 cylinders will cause primary and secondary resultant moments about No. 2 cylinder. Conventional method of designing a dynamically balanced crank train is time consuming and leads to rework during manufacturing.
Technical Paper

Effect of Welding Consumables on Static and Dynamic Properties of Representative Welded Joints for Chassis Structure

2021-09-22
2021-26-0259
Automotive suspension system forms the basis for the design of vehicle with durability, reliability, dynamics and NVH requirements. The automotive suspension systems are exposed to dynamic and static loads which in turn demands the highest integrity and performance against fatigue based metallic degradation. The current focus in automotive industry is to reduce the weight of the automotive parts and components without compromising with its static and dynamic mechanical properties. This weight reduction imparts fuel efficiency with added advantages. High-Strength Low Alloy steel (HSLA) offers optimum combination of ductility, monotonic and cyclic mechanical properties. Furthermore, welding processes offer design flexibility to achieve robust and lightweight designs with high strength steels.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
Technical Paper

A Continuum Design Sensitivity Analysis of Vehicle Aggregates for Refined NVH Performance

2021-09-22
2021-26-0294
Transmission of vibration and noise to the occupants and especially driver contributes significantly to the quality perception of the motor vehicle and eventually, it affects the overall ride comfort. These forces mainly reach to customer through tactile locations, i.e. floor, gearshift lever, steering wheel and seat. Showroom/Parking customer drive pattern of a vehicle evinces the steering system and driver’s seat rail vibration as strikingly linked aspect to evaluate human comfort [1]. This paper deals with the study of vibration at steering wheel and seat affecting human comfort at engine idle rpm with AC ON and OFF condition for passenger vehicles. The transmissibility of engine and radiator induced vibrations has been investigated with respect to modal alignment of steering and seat system.
Technical Paper

Coupled CFD Simulation of Brake Duty Cycle for Brake System Design

2021-09-22
2021-26-0360
Brake system design is intended to reduce vehicle speed in a very short time by ensuring vehicle safety. In the event of successive braking, brake system absorbs most of vehicle’s kinetic energy in the form of heat energy, at the same time it dissipates heat energy to the surrounding. During this short span of time, brake disc surface and rotor attains the highest temperatures which may cross their material allowable temperature limit or functional requirement. High temperatures on rotor disc affects durability & thermal reliability of the brake rotor. Excessive temperature on brake rotors can induce brake fade, disc coning which may result in reduced braking efficiency. To address the complex heat transfer and highly transient phenomenon during successive braking, numerical simulations can give more advantage than physical trials which helps to analyze complex 3D flow physics and heat dissipation from rotors in the vicinity of brake system.
Technical Paper

A Closed System Simulation based Methodology to Accomplish Advance Engine Calibrations towards CAFE

2021-09-22
2021-26-0352
The automotive engineering fraternity is facing tremendous challenges to improve fuel economy and emissions of the internal combustion engine. The stringent CAFÉ standards for CO2 emissions are expected to become further demanding as time progresses. Indian OEM engineering experts have been considering various technology options to improve vehicle fuel economy. However, the time and costs associated with the development of these strategies and technologies remains a point of major concern and challenge. The potential of a technology to reduce fuel consumption can be estimated in three basic ways. One approach involves developing an actual prototype engine and vehicle with the technologies under evaluation, performing the actual measurements. Some variability from test to test is although expected, this method is the most accurate but time consuming and very expensive.
Technical Paper

Effects of Environmental Factors on Flexural Properties of Long Fiber Reinforced Polymer Composite

2021-09-22
2021-26-0257
Environmental regulation, operating cost reduction and meeting stringent safety norms are the predominant challenges for the automotive sector today. Automotive OEMs are facing equally aggressive challenges to meet high fuel efficiency, superior performance, low cost and weight with enhanced durability and reliability. One of the key technologies which enable light weighting and cost optimization is the use of fiber reinforced polymer (FRP) composite in automotive chassis systems. FRP composites have high specific strength, corrosion and fatigue resistance with additional advantage of complex near net shape manufacturing and tailor made properties. These advantages makes FRPs an ideal choice for replacing conventional steel chassis automotive components. However, FRP’s face challenges from operating environment, in particular temperature and moisture.
Technical Paper

Continuous Fiber Reinforced Composite Container for N1 Category of Vehicles

2021-09-22
2021-26-0251
The small commercial vehicle business is driven by demand in logistic, last mile transportation and white goods market. And to cater these businesses operational and safety needs, they require closed container on vehicle. As of now, very few OEM’s provide regulatory certified container vehicle because of constrains to meet inertia class of the vehicle. This paper focuses on design of a durable and extremely reliable container, made of the low-cost economy class glass fibre & core material. The present work provides the means to design the composite container for the N1 category of the vehicle. The weight of after-market metal container ranges between 300-350 Kg for this category of vehicle, which affects the overall fuel economy and emission of the vehicle. A detailed CAE analysis is done to design composite container suitable to meet inertia class targets and to achieve weight reduction of 30-40% as compared to metal container.
Technical Paper

Design of Door Latching and Locking Systems for Crashworthiness

2008-01-09
2008-28-0058
Several sub-systems in a vehicle contribute to vehicle crashworthiness. One such system is the door latch and locking system. Correct functioning of this system is critical for facilitating occupant evacuation and preventing occupant ejection during crashes. Special care needs to be taken during vehicle safety development to achieve the desired intent. In crashes, it is observed that door opening or locking mainly occurs on account of inertial loads and deformation of the door structure. This paper studies the possible failure modes and their causes. Some likely solutions have also been discussed with a case study.
Technical Paper

Evaluation of Potential Benefit of 6 × 2 Over 6 × 4 Drive Mode to Improve the Fuel Economy on Heavy Commercial Vehicle

2009-04-20
2009-01-1359
Reduction in the drivetrain losses of a vehicle is one of the important contributing factors to amplify the fuel economy of vehicle, particularly in heavy commercial vehicle. The conversion of 6 × 4 drive vehicle into 6 × 2 drive has a benefit of improving the fuel economy of a vehicle by reducing the drivetrain losses occurring in the second rear axle. It was cultured by calculation that in 6 × 2 drive the tractive force available at the wheels, of heavy commercial vehicle with GVW of 44 tons and above, will be much higher than the frictional force transmission capacity of tires, when the engine is producing peak torque on the driving duty cycle like going on steep gradient road. In such situations the tires will start to slip and may result in deteriorating the fuel economy and excessive tire wear. On the other side the flat road driving duty cycle in 6 × 2 drive will give better fuel economy than 6 × 4 drive.
Technical Paper

Methodology for Measurement of Inherent Driveline Frictional Force for a Vehicle in Coasting Mode

2009-04-20
2009-01-0416
Today, with the introduction of Euro-III engines it is possible to achieve almost zero fuel consumption in coasting mode. This means more the distance covered in coasting mode better will be the overall fuel economy of the vehicle. In turn, distance covered by the vehicle in coasting mode depends on the driveline frictional losses i.e. for a particular moving inertia of a vehicle higher the inherent driveline frictional loss lesser will be the distance negotiated by the vehicle. The proposed methodology has been established to determine this inherent frictional force component acting all across the driveline while the vehicle is run in coasting mode under no-load condition. The application of this methodology is limited to vehicles with manual transmission.
Technical Paper

Optimization of Brake Pedal Feel and Performance for Dual Air Over Hydraulic System on Light Commercial Vehicles

2010-10-05
2010-01-1888
In current scenario, Light Commercial Vehicle segment (7 ton - 9.6 ton) is gradually experiencing a shift in the focus from being just a goods carrier to a vehicle which is developed to take care of driver's safety and comfort in terms of better ergonomics and aesthetics. As compared to their conventional counterparts the new generation Light Commercial Vehicles are better equipped and tuned to cater to the changing needs of the consumers. In view of this, refinement at the sub system level is becoming far more critical. On the same lines, the present work discusses a refined brake system for Light Commercial Vehicles where the conventional pneumatic system is replaced with Dual Air Over Hydraulic (DAOH) to achieve cost and weight advantages without compromising on its performance. However, during the development process, a lot of issues were observed with respect to the braking performance and the brake pedal feel.
Technical Paper

How to Enhance Gear Shift Feel of North-South Transmission Layout

2016-10-17
2016-01-2357
Globalization has intensively driven focus of car manufacturers on comfort and ergonomics. Luxuries are becoming essential features of product mix. Customer’s expectations and desires are changing because of cut throat competition and increasing variety of options. In order to sustain in marketplace, OEM has to be competitive while providing features and options with appropriate quality. Vigorously changing dimensions and definitions of comfort level, luxury and aesthetics has driven the intense focus of OEM’s on customer touch points, customer touch points are those components of vehicle which customer accesses while driving the vehicle and they play vital role in generating drive feel of vehicle. Customer’s drive feel about the vehicle is most complex and critical factor and is of subjective nature. Now days drive feel is an important aspect of product differentiation. Gear shift feel is very crucial touch point in overall drive feel of vehicle.
Technical Paper

Improving Fuel Economy of Commercial Vehicle by Introducing Optimized Electro-Magnetically Coupled Fan Drive

2016-09-27
2016-01-8054
Increasing fuel cost and constant pressure to maximize the fuel economy are forcing OEMs in India to look for alternate engine cooling mechanism which will minimize the power take off from the engine without affecting the system reliability. Aim of this paper is to analyze the potential benefit of incorporating Electro-magnetic fan (EMF) drive in terms of fuel economy and reduced load on the engine. These benefits were compared with the conventional viscous coupled fan drive system. In vehicle with viscous coupling, fan RPM is based on the ram air temperature at coupling face which takes heat from turbo-charged air and coolant. On the other hand, EMF drive have a separate controller and control the fan RPM based on the coolant temperature enabling itself to respond directly to changes in the heat load as compared to viscous coupling having indirect representation of Coolant/charged air temperature.
Technical Paper

Development of an optimized cooling system for a light duty Pickup truck

2016-09-27
2016-01-8074
With the advent of most advanced diesel engines the demand for upgraded engine cooling modules capable of handling more heat rejection in a smaller space is surging. Moreover, the variance in the operating conditions, i.e., the simultaneous cooling demands for peak load as well as partial load in different ambient conditions of the vehicle operation, broadens the scope of development of a cooling system. Also, the cooling system needs to be configured judiciously so as to cater effective cooling at peak loads and efficient cooling at partial loads. This research paper deals with a cooling system developed using modularity approach in order to have a control over tuning of subsystems for varying operating conditions and also to achieve the performance targets with a compact design adhering to packaging constraints. Kuli simulation of different designed configurations were carried out for identification of best concept.
X