Refine Your Search

Topic

Search Results

Journal Article

Practical Approach to Develop Low Cost, Energy Efficient Cabin Heating for Extreme Cold Operating Environment

2011-04-12
2011-01-0132
In cold climatic regions (25°C below zero) thermal comfort inside vehicle cabin plays a vital role for safety of driver and crew members. This comfortable and safe environment can be achieved either by utilizing available heat of engine coolant in conjunction with optimized in cab air circulation or by deploying more costly options such as auxiliary heaters, e.g., Fuel Fired, Positive Temperature Coefficient heaters. The typical vehicle cabin heating system effectiveness depends on optimized warm/hot air discharge through instrument panel and foot vents, air directivity to occupant's chest and foot zones and overall air flow distribution inside the vehicle cabin. On engine side it depends on engine coolant warm up and flow rate, coolant pipe routing, coolant leakage through engine thermostat and heater core construction and capacity.
Journal Article

An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement

2013-04-08
2013-01-1750
With the current state of ever rising fuel prices and unavailability of affordable alternate technologies, significant research and development efforts have been invested in recent times towards improving fuel efficiency of vehicles powered with conventional internal combustion engines. To achieve this, a varied approach has been adopted by researchers to cover the entire energy chain including fuel quality, combustion quality, power generation efficiency, down-sizing, power consumption efficiency, etc. Apart from energy generation, distribution and consumption, another domain that has been subjected to significant scrutiny is energy recuperation or recovery. A moving vehicle and a running engine provide a number of opportunities for useful back-recovery and storage of energy. The most significant sources for recuperation are the kinetic energy of the moving vehicle or running engine and to a lesser extent the thermal energy from medium such as exhaust gas.
Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

Brake Groan Noise Investigation and Optimization Strategies for Passenger Vehicles

2021-09-22
2021-26-0301
Groan is a low frequency noise generated when moderate brake pressure is applied between the surfaces of the brake disc and the brake pad at a low-speed condition. Brake groan is often very intense and can cause large numbers of customer complaints. During a groan noise event, vehicle structure and suspension components are excited by the brake system and result in a violent event that can be heard and felt during brake application. The cause of noise is friction variation of stick-slip phenomenon between friction material and disc. Creep groan is the structure-borne noise that is related to dynamic characteristic of the vehicle. However, it has been mainly improved through friction material modifications in the past. In this paper, transfer path of creep groan noise was analyzed by means TPA and structural countermeasure to creep groan noise was suggested. This paper discusses the approach for prediction and mitigation of brake groan noise for passenger vehicles having disc brakes.
Technical Paper

Numerical Approach to Welding Process and its Integration in Assessment of Fatigue life of Component

2021-09-22
2021-26-0357
Welding is one of the most convenient and extensively used manufacturing process across every industry and is recognized as a cost effective joining technique. The root cause of most of the fabricated structural failures lies in the uncertainties associated with the welding process. It is prone to generate high residual stresses due to non-volumetric changes during heating and cooling cycle. These residual stresses have a significant impact on fatigue life of component leading to poor quality joints. To alleviate these effects, designers and process engineers rely upon their experience and thumb rules but has its own limitations. This approach often leads to conservative designs and pre-mature failures. Recent advances in computational simulation techniques provide us opportunity to explore the complex phenomenon and generate deep insights. The paper demonstrates the methodology to evaluate the residual stresses due to welding in virtual environment.
Journal Article

Study of Frequency Characteristics of Vehicle Motions for the Derivation of Inherent Jerk

2016-04-05
2016-01-1681
Jerk in a vehicle is a feel of user which appears due to sudden acceleration changes. The amplitude and frequency components of the jerk defines quality of an engine or an AMT calibration tuning. Traditional jerk evaluation methods use amplitude (peak) of the jerk as a performance index and its frequencies are either used as weighing factor with amplitude or not taken into account. A method is proposed in this paper to quantify and differentiate the non-acceptable level of jerk which is perceivable to human body. Jerk is obtained by differentiating the acceleration data which contains the frequencies in the lower to higher range. Differentiation of such signal causes an amplification of undesired noise in both analog and digital circuits. This results in significant loss or disturbances in the useful data.
Technical Paper

Virtual Development of Optimum Twist Beam Design Configuration for a New Generation Passenger Car

2007-08-05
2007-01-3562
It is customary to select a twist beam rear suspension for front wheel driven small and medium range passenger cars. Besides better primary / secondary ride comfort, roll stiffness tuning ability, ease of assembly & good packaging solutions than the conventional semi trailing arm/ rigid axle suspensions, twist beam suspension system accentuate the concentration required in placing & orienting the cross beam to achieve certain imperative kinematical characteristics. In order to make the solutions of the required kinematical targets viable, it is vital to have the packaging space and stress concentration within yield limits given the weight & cost targets. This paper presents the work done on twist beam type suspension for a new generation entry level B-Class hatchback vehicle developed. To reduce the time consumed in validation of different design proposals a virtual validation process was developed.
Technical Paper

Design of Commercial Vehicle Cooling Packages

2008-04-14
2008-01-0264
Optimization of vehicle engine cooling package with requisite heat rejection capacity plays a key role in achieving most fuel economy and also in meeting the stringent noise norms. A set of design and operating features from existing vehicle engine cooling systems is reviewed and evaluated for their potential to provide optimized engine cooling. The features reviewed states significant potential in engine performance but these are balanced by satisfying required engine cooling requirement. Sets of trials are carried out on said vehicle with dissimilar features of cooling packages and the results are evaluated. Fuel economy trials in performance mode are carried out on vehicle with well thought-out cooling package for healthier comparison.
Technical Paper

Suspension Testing using Wheel Forces on a 3 DOF Road Load Simulator

2008-04-14
2008-01-0223
The use of Wheel Force Transducers (WFTs) to acquire data for laboratory simulation is becoming standard industry practice. However, in test rigs where we have only the suspension module and not the complete vehicle, does the reproduction of the orthogonal forces and moments at the wheel centre guarantee an accurate replication of the fatigue damage in the suspension components? The objective of this paper is to review the simulation methodology for a highly non-linear suspension in a 3 DOF (degree-of-freedom) suspension test rig in which the simulation was carried out using only the three orthogonal loads and vertical displacement. The damage at critical locations in the suspension is compared with that on the road and an assessment of the simulation using the WFT is made based on a comparison of the damage on the road vs. the rig.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

Development of IT Enabled System for Data Management to Meet EU Vehicle Recyclability Directives

2010-04-12
2010-01-0276
EU directive 2005/64/EC on type approval of motor vehicles with respect to their Reusability, Recyclability and Recoverability ( RRR ) requires vehicle manufacturers to put in place the necessary arrangements and procedures for Parts, Materials and Weight (PMW ) data collection from full chain of supply. This is required to perform the calculations of recyclability rate and recoverability rate in line with ISO 22628. Commonly practiced data collection methodologies included spreadsheet and use of internationally available IT support system for collection of material data. Data complexity and prohibitive cost for using Internationally available IT Support systems like IMDS (International Material Data System) has led to the in-house development of IT enabled Solution customizing Siemens PLM software product (Team centre Enterprise) and SAP (SRM suite).
Technical Paper

Methodology Development to Accurately Predict Aerodynamic Drag and Lift for Passenger Vehicles Using CFD.

2016-04-05
2016-01-1600
Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
Technical Paper

Study of Parameters Influencing the Chest Deflection of Hybrid III Dummy in Crash Tests

2012-01-09
2012-28-0002
Anthropomorphic Test Devices (ATD) are the backbone of any crash research lab, their performance during the crash tests being of paramount importance to assess the vehicle performance. The Hybrid III 50th percentile dummy (H350) is one of the most recognized and accepted ATD for research in this field. However several unusual results of the dummy injuries in a vehicle crash test indicate some discrepancies exists in the dummy design. This prompted researchers to investigate such things and this paper is based on a project conducted to study the chest deflection of the hybrid 350 dummy. The project deals with assessing the dummy's chest deflection response sensitivity to load location as well as ambient operating conditions. The scope involved testing of the dummy chest by loading it quasi-statically on a UTM as well as dynamically impacting it on the dummy calibration rig. The chest deflection or thorax displacement data and loading data was gathered and analyzed further.
Technical Paper

Performance Driven Package Feasibility of Side Restraints Using KBE Tools

2013-01-09
2013-26-0027
Integrating safety features may lead to changes in vehicle interior component designs. Considering this complexity, design guidelines have to take care of aspects which may help in package feasibility studies that consider systems performance requirements. Occupant restraints systems for protection in side crashes generally comprise of Side Airbag (SAB) and Curtain Airbag (IC). These components have to be integrated considering design and styling aspects of interior trims, seat contours and body structure for performance efficient package definition. In side crashes, occupant injury risk increases due to hard contact with intruding structure. This risk could be minimized by cushioning the occupant contact through provision of SAB and Inflatable IC. This paper explains the methodology for deciding the package definitions using Knowlwdge Based Engineering (KBE) tools.
Technical Paper

A Study on Improvements in Side Impact Test vs CAE Structural Correlation

2013-01-09
2013-26-0034
Computer Aided Engineering (CAE) plays an important role in the product development. Now a days major decisions like concept selection and design sign off are taken based on CAE. All the Original Equipment Manufacturers (OEMs) are putting consistent efforts to improve accuracy of the CAE results. In recent years confidence on CAE prediction has been increased mainly because of good correlation of CAE predictions with the test results. Defining proper correlation criteria and using a systematic approach helps significantly in building the overall confidence level for predictions given by CAE simulations. Representation of manufacturing effects on material properties and material failure in the simulation is still a big challenge for achieving a good CAE correlation. This paper describes side impact test vs CAE correlation. The important parameters affecting the CAE correlation were discussed.
Technical Paper

Challenges to Meet New Noise Regulations and New Noise Limits for M and N Category Vehicles

2013-01-09
2013-26-0107
New noise regulations, with reduced noise limits, have been proposed by UN-ECE. A new method which aims at representing urban driving of the vehicles more closely on roads is proposed and is considerably different from the existing one (IS 3028:1998). It is more complex; we also found that some of the low powered vehicles can not be tested as per this method. The paper proposes ways of improvement in the test method. The new noise reduction policy options will have a considerable impact on compliance of many categories of vehicles. Technological challenges, before the manufacturers, to meet all performance needs of the vehicle along with the cost of development will be critical to meet the new noise limits in the proposed time frame.
Technical Paper

Regenerative Braking Strategy for an Unaltered Mechanical Braking System of a Conventional Vehicle Converted into a Hybrid Vehicle

2013-01-09
2013-26-0155
Regenerative braking has become one of the major features for a hybrid vehicle as it converts brake energy into electrical energy storable into battery and leads to an increase in overall fuel efficiency of the vehicle. Traditional regenerative braking systems are designed such that the mechanical braking force from the friction brakes is varied in order to get maximum electric braking. This is the optimum method; however, such a system calls from electronics (Anti-lock Braking System) for regulation of mechanical braking leading to an increased cost. In this paper, the authors present a new strategy for implementing a regenerative brake strategy without changing the mechanical brake system of a conventional vehicle converted to a hybrid vehicle. The electric motor that serves as the traction motor or the Integrated Starter Generator (ISG) system, is used for regenerative braking also. There is no change in the other vehicle specifications as compared to the conventional vehicle.
Technical Paper

Development of Cost Effective Footpad to Mitigate Lower Leg Injury During Anti Vehicle IED Blast

2013-04-08
2013-01-1246
Improvised Explosive Devices (IEDs) and Anti-Tank (AT) mines are a significant threat for military vehicles and their occupants. These explosive devices are designed for the destruction and damage of armored and other vehicles, by using them in battle fields on routes of army vehicles. The blast event results in effects like shockwave, fragments, fire, gases, blast overpressure as well as the vertical impulse load. A blast event affects occupants inside the vehicle in the form of various types of injuries (lower leg, spinal, chest, head etc) and trauma. The Lower leg is the foremost injured body region in a blast event. The term lower leg is used to designate the tibia, fibula and the foot/ankle complex in this paper. Detonations occurring under a vehicle produce high velocity floorboard flutter/deformation and transmit axial loads to lower leg and create injuries.
Technical Paper

Simulation of Restart Gradability of a Manual Transmission Vehicle Using AVL-CRUISE

2013-10-14
2013-01-2516
1 With increasing fuel price, the power train size is on a downward trend. For Fuel Economy maximization, the engine capacity and reduction ratios are getting reduced. So gradability of a vehicle is becoming a trade off factor for the power train size finalization in a car. At the same time OEMs are working hard to maintain profitability by reducing development and operational cost and time. In this complexly competitive scenario in automobile manufacturing, simulation is gaining an upper hand over actual testing as simulation consumes lesser time and resource as compared to actual testing. This paper is aimed at developing a simulation technique for restart or stop and start gradability which is a very critical parameter for finalization of engine torque characteristics and power train configuration. The simulation is done on AVL-CRUISE software.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
X