Refine Your Search

Topic

Author

Search Results

Journal Article

Body Induced Boom Noise Control by Hybrid Integrated Approach for a Passenger Car

2013-05-13
2013-01-1920
Vehicle incab booming perception, a low frequency response of the structure to the various excitations presents a challenging task for the NVH engineers. The excitation to the structure causing boom can either be power train induced, depending upon the number of cylinders or the road inputs, while transfer paths for the excitation is mainly through the power train mounts or the suspension attachments to the body. The body responds to those input excitations by virtue of the dynamic behavior mainly governed by its modal characteristics. This paper explains in detail an integrated approach, of both experimental and numerical techniques devised to investigate the mechanism for boom noise generation. It is therefore important, to understand the modal behavior of the structure. The modal characteristics from the structural modal test enable to locate the natural frequencies and mode shapes of the body, which are likely to get excited due to the operating excitations.
Technical Paper

Numerical Approach to Welding Process and its Integration in Assessment of Fatigue life of Component

2021-09-22
2021-26-0357
Welding is one of the most convenient and extensively used manufacturing process across every industry and is recognized as a cost effective joining technique. The root cause of most of the fabricated structural failures lies in the uncertainties associated with the welding process. It is prone to generate high residual stresses due to non-volumetric changes during heating and cooling cycle. These residual stresses have a significant impact on fatigue life of component leading to poor quality joints. To alleviate these effects, designers and process engineers rely upon their experience and thumb rules but has its own limitations. This approach often leads to conservative designs and pre-mature failures. Recent advances in computational simulation techniques provide us opportunity to explore the complex phenomenon and generate deep insights. The paper demonstrates the methodology to evaluate the residual stresses due to welding in virtual environment.
Journal Article

Study of Frequency Characteristics of Vehicle Motions for the Derivation of Inherent Jerk

2016-04-05
2016-01-1681
Jerk in a vehicle is a feel of user which appears due to sudden acceleration changes. The amplitude and frequency components of the jerk defines quality of an engine or an AMT calibration tuning. Traditional jerk evaluation methods use amplitude (peak) of the jerk as a performance index and its frequencies are either used as weighing factor with amplitude or not taken into account. A method is proposed in this paper to quantify and differentiate the non-acceptable level of jerk which is perceivable to human body. Jerk is obtained by differentiating the acceleration data which contains the frequencies in the lower to higher range. Differentiation of such signal causes an amplification of undesired noise in both analog and digital circuits. This results in significant loss or disturbances in the useful data.
Technical Paper

Virtual Development of Optimum Twist Beam Design Configuration for a New Generation Passenger Car

2007-08-05
2007-01-3562
It is customary to select a twist beam rear suspension for front wheel driven small and medium range passenger cars. Besides better primary / secondary ride comfort, roll stiffness tuning ability, ease of assembly & good packaging solutions than the conventional semi trailing arm/ rigid axle suspensions, twist beam suspension system accentuate the concentration required in placing & orienting the cross beam to achieve certain imperative kinematical characteristics. In order to make the solutions of the required kinematical targets viable, it is vital to have the packaging space and stress concentration within yield limits given the weight & cost targets. This paper presents the work done on twist beam type suspension for a new generation entry level B-Class hatchback vehicle developed. To reduce the time consumed in validation of different design proposals a virtual validation process was developed.
Technical Paper

Suspension Testing using Wheel Forces on a 3 DOF Road Load Simulator

2008-04-14
2008-01-0223
The use of Wheel Force Transducers (WFTs) to acquire data for laboratory simulation is becoming standard industry practice. However, in test rigs where we have only the suspension module and not the complete vehicle, does the reproduction of the orthogonal forces and moments at the wheel centre guarantee an accurate replication of the fatigue damage in the suspension components? The objective of this paper is to review the simulation methodology for a highly non-linear suspension in a 3 DOF (degree-of-freedom) suspension test rig in which the simulation was carried out using only the three orthogonal loads and vertical displacement. The damage at critical locations in the suspension is compared with that on the road and an assessment of the simulation using the WFT is made based on a comparison of the damage on the road vs. the rig.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

Derivation of Test Schedule for Clutch Using Road Load Data Analysis and Energy Dissipation as Basis

2018-04-03
2018-01-0404
During every clutch engagement energy is dissipated in clutch assembly because of relative slippage of clutch disc w.r.t. flywheel and pressure plate. Energy dissipated in clutch is governed by many design parameters like driveline configuration of the vehicle vis-a-vis vehicle mass, and operational parameters like road conditions, traffic conditions. Clutch burning failure, which is the major failure mode of clutch assembly, is governed by energy dissipation phenomenon during clutch engagement. Clutch undergoes different duty cycles during usage in city traffic, highways or hilly regions during its lifetime. A test schedule was derived using energy dissipated during every clutch engagement event as a base and using road load data collected on the vehicle. Road load data was collected in different road mix conditions comprised of city traffic, highway, hilly region, rough road for few hundred kilometers.
Technical Paper

Spot Weld Failure Prediction in Safety Simulations Using MAT-240 Material Model in LS-DYNA

2015-01-14
2015-26-0165
Spot welding is the primary joining method used in automobiles. Spot-weld plays a major role to maintain vehicle structural integrity during impact tests. Robust spot weld failure definitions is critical for accurate predictions of structural performance in safety simulations. Spot welds have a complex metallurgical structure, mainly consisting of fusion and heat affected zones. For accurate material property definitions in simulation models, huge number of inputs from test data is required. Multiple tests, using different spot weld joinery configurations, have to be conducted. In order to accurately represent the spot-weld behavior in CAE, detailed modeling is required using fine mesh. The current challenge in spot-weld failure assessment is developing a methodology having a better trade-off between prediction accuracy, testing efforts and computation time. In view of the above, cohesive zone models have been found to be very effective and accurate.
Technical Paper

Evaluation of Cabin Comfort in Air Conditioned Buses Using CFD

2014-04-01
2014-01-0699
The objective of the work presented in this paper is to provide an overall CFD evaluation and optimization study of cabin climate control of air-conditioned (AC) city buses. Providing passengers with a comfortable experience is one of the focal point of any bus manufacturer. However, detailed evaluation through testing alone is difficult and not possible during vehicle development. With increasing travel needs and continuous focus on improving passenger experience, CFD supplemented by testing plays an important role in assessing the cabin comfort. The focus of the study is to evaluate the effect of size, shape and number of free-flow and overhead vents on flow distribution inside the cabin. Numerical simulations were carried out using a commercially available CFD code, Fluent®. Realizable k - ε RANS turbulence model was used to model turbulence. Airflow results from numerical simulation were compared with the testing results to evaluate the reliability.
Technical Paper

Comparative Studies of Adhesive Joints in Automotive

2014-04-01
2014-01-0788
Use of adhesives in automotive require in-depth material, design, manufacturing & engineering knowledge. It is also necessary to understand functional requirements. For perfect and flawless adhesive joinery, the exact quantity of adhesive, its material composition, thickness of adhesive layer, substrate preparation methods for adhesive bonding, handling and curing time of the adhesive have to be studied & optimized. This paper attempts to describe different aspects of adhesive bonding in automotive industry to include: Selection of adhesives based on application and design of the components, surface preparation of adherend, designing of adhesive joint, curing conditions of adhesives, testing and validation of adhesive joints. Emphasis was given to study & verify the performance of different adhesive joints to meet end product requirements. Samples were prepared with a variety of adhesive and adherend combinations.
Technical Paper

Adhesive Failure Prediction in Crash Simulations

2019-01-09
2019-26-0297
Structural adhesive is a good alternative to provide required strength at joinery of similar and dissimilar materials. Adhesive joinery plays a critical role to maintain structural integrity during vehicle crash scenario. Robust adhesive failure definitions are critical for accurate predictions of structural performance in crash Computer Aided Engineering (CAE) simulations. In this paper, structural adhesive material characterization challenges like comprehensive In-house testing and CAE correlation aspects are discussed. Considering the crash loading complexity, test plan is devised for identification of strength and failure characteristics at 0°, 45°, 75°, 90°, and Peel loading conditions. Coupon level test samples were prepared with high temperature curing of structural adhesive along with metal panels. Test fixtures were prepared to carryout testing using Instron VHS machine under quasi-static and dynamic loading.
Technical Paper

Virtual Road Torque Data Collection

2019-01-09
2019-26-0289
The traditional method of collecting the Road Torque Data of a vehicle is by instrumenting and running the vehicle on different road terrains. Every time, physical testing becomes tedious & most challenging task due to unavailability of unit under tests, kind of resource required and so on. However, in view of response to the fast emerging technology & limit less competition, it has become mandatory to develop & launch products in market within no time. In recent times, there is increased demand for physical road torque data measurements for a vehicle program based on its application and different powertrain configurations, which clearly shows that unless we front load the data to design it is practically impossible to meet the deadlines. Each of these measurements cost and consumes valuable resources of the company in collecting and analyzing the data.
Technical Paper

Parametric Study of Hub Cum Brake Drum for Optimum Design Performance

2015-01-14
2015-26-0079
Brake drum is an important component in automotive, which is a link between axle and wheel. It performance is of utmost importance as it is related to the safety of the car as well to the passengers. Many design parameters are taken into consideration while designing the brake drum. The sensitivity of these parameters is studied for optimum design of brake drum. The critical parameters in terms of reliability, safety & durability could be the cross section, thickness of hub, interference & surface roughness between bearing and hub, wheel loading, heat generation on drum, manufacturing and assembly process. The brake drum design is derived by considering these parameters. Hence the sensitivity of these parameters is studied both virtually & physically, in detail. The optimum value of each parameter could be chosen complying each other's values.
Technical Paper

Dynamic Spark Advance Technology for Gasoline Fuel Blends

2024-01-16
2024-26-0074
Fuel efficiency is one of the most important customer requirement in Indian market as well as very crucial to meet the upcoming regulation like CAFÉ for Indian Automotive manufacturers. Most of the technology changes to meet this challenge, always come with a cost penalty with hardware addition. To counter the above challenge, a strategy has been identified in the EMS software that will dynamically adapt the spark timing based on fuel octane rating. This strategy has resulted in fuel efficiency improvement on Modified Indian Drive Cycle on chassis dynamometer test and as well as on real life road tests using fuels with various octane number.
Technical Paper

Automated Charging Methodology for Fleet Operated EV Buses to Reduce Down Time and Increase Safety at Charging Station

2024-01-16
2024-26-0112
Prime concern for electric vehicle where the application of the vehicle is public transport, is the charging of vehicle and operation of its infrastructure. Such an example of operating the EV buses is under the GCC (gross cost contract) model, with high operation time and comparatively lesser time for charging. It is challenging to meet these requirements. To counter this situation in fleet operated busses it is proposed to adapt an automated charging method which involves minimum man power intervention and automated mechanism to connect & disconnect the charging connectors. This paper proposes an automated pantograph mechanism based method of charging EV buses, meeting requirements as per SAE J3105 & ISO 15118 standards, which would be an ideal way to resolve the current situation.
Technical Paper

Geometry, Sizing and Optimization of Honeycomb Structures along with Embedded Metal Inserts on the Floor for Truck-Mounted Container Applications

2024-01-16
2024-26-0186
With the rise of worldwide trends towards light weighting and the move towards electric vehicles, it is now more important than ever for the automotive industry to develop and implement lightweight materials that will result in significant weight reduction and product improvements. A great deal of research has been done on how to best combine and configure honeycomb cores with the right face sheets for Truck-Mounted Container Applications. Honeycomb structures possess the ability to bring about superior structural rigidity when the core parameters are selected and optimized based on the automotive application requirements.
Technical Paper

Effect of Spot Weld Parameter on HAZ of Advanced High Strength Steel Joint

2024-01-16
2024-26-0187
To meet different target of light-weighting, lower fuel economy, crash safety and emission requirement, advanced high strength steel (AHSS) is commonly used in automotive vehicles and has become popular now a days. AHSS material up-to 1500 MPa is commonly used for structural components and major reinforcement of automotive BIW. Manufacturing of AHSS material requires precise control of chemical composition, and subsequent rolling and heat treatment to get optimum combination of required phases In most of the AHSS material microstructure, martensite is present along with ferrite or other phases. Hot stamp steel with strength level 1500 MPa strength also have martensite phase in microstructure after press hardening. However during heating and cooling cycle in resistance spot welding, martensite phase tempering affects hardness at Heat Affected Zone (HAZ).
Technical Paper

Cyber Threats and Its Mitigation to Intelligent Transportation System

2024-01-16
2024-26-0184
With the revolutionary advancements in modern transportation, offering advanced connectivity, automation, and data-driven decision-making has put the intelligent transportation systems (ITS) to a high risk from being exposed to cyber threats. Development of modern transportation infrastructure, connected vehicle technology and its dependency over the cloud with an aim to enhance safety, efficiency, reliability and sustainability of ITS comes with a lot more opportunities to protect the system from black hats. This paper explores the landscape of cyber threats targeting ITS, focusing on their potential impacts, vulnerabilities, and mitigation strategies. The cyber-attacks in ITS are not just limited to Unauthorized Access, Malware and Ransomware Attacks, Data Breaches, Denial of Service but also to Physical Infrastructure Attacks.
Technical Paper

Performance Evaluation Study to Optimize the NOx Conversion Efficiency of SDPF Catalyst for BS6 RDE/OBD2 Engine Application

2024-01-16
2024-26-0161
To meet future emission levels, the automotive industry is trying to reduce tailpipe emissions through both possible pathways, i.e. emission from engines as well as and the development of novel catalytic emission control concepts. The present study will focus on the close coupled SCR on Filter commonly known as SDPF which is a main pathway to reduce NOx along with particulate mass and number for light duty passenger cars and sport utility vehicles for BS 6 RDE/OBD 2 and future legislation like BS-7. The SDPF is a challenging technology as it is critical component in exhaust after treatment system involving in NOx and PM/PN reductions hence careful optimization of this technology is necessary in terms of space velocity requirements, temperature, feed NOx emission levels, particulate mass and ash holding capacities, NH3 storage on the SDPF, and back pressure.
X