Refine Your Search

Topic

Author

Search Results

Journal Article

Practical Approach to Develop Low Cost, Energy Efficient Cabin Heating for Extreme Cold Operating Environment

2011-04-12
2011-01-0132
In cold climatic regions (25°C below zero) thermal comfort inside vehicle cabin plays a vital role for safety of driver and crew members. This comfortable and safe environment can be achieved either by utilizing available heat of engine coolant in conjunction with optimized in cab air circulation or by deploying more costly options such as auxiliary heaters, e.g., Fuel Fired, Positive Temperature Coefficient heaters. The typical vehicle cabin heating system effectiveness depends on optimized warm/hot air discharge through instrument panel and foot vents, air directivity to occupant's chest and foot zones and overall air flow distribution inside the vehicle cabin. On engine side it depends on engine coolant warm up and flow rate, coolant pipe routing, coolant leakage through engine thermostat and heater core construction and capacity.
Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

A Model Based Approach to DPF Soot Estimation and Validation for BSVI Commercial Vehicles in Context to Indian Driving Cycles

2021-09-22
2021-26-0183
With India achieving the BSVI milestone, the diesel particulate filter (DPF) has become an imperative component of a modern diesel engine. A DPF system is a device designed to trap soot from exhaust gas of the diesel engine and demands periodic regeneration events to oxidize the accumulated soot particles. The regeneration event is triggered either based on the soot mass limit of the filter or the delta pressure across it. For a Heavy Duty Diesel Engine (HDDE), pressure difference across the DPF is not usually reliable as the size of the DPF is large enough compared to the DPF used ina passenger vehicle diesel engine. Also, the pressure difference across DPF is a function of exhaust mass flow and thus it makes it difficult to make an accurate call for active regeneration. This demands for a very accurate soot estimation model and it plays a vital role in a successful regeneration event.
Technical Paper

Brake Groan Noise Investigation and Optimization Strategies for Passenger Vehicles

2021-09-22
2021-26-0301
Groan is a low frequency noise generated when moderate brake pressure is applied between the surfaces of the brake disc and the brake pad at a low-speed condition. Brake groan is often very intense and can cause large numbers of customer complaints. During a groan noise event, vehicle structure and suspension components are excited by the brake system and result in a violent event that can be heard and felt during brake application. The cause of noise is friction variation of stick-slip phenomenon between friction material and disc. Creep groan is the structure-borne noise that is related to dynamic characteristic of the vehicle. However, it has been mainly improved through friction material modifications in the past. In this paper, transfer path of creep groan noise was analyzed by means TPA and structural countermeasure to creep groan noise was suggested. This paper discusses the approach for prediction and mitigation of brake groan noise for passenger vehicles having disc brakes.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Technical Paper

Enhancing Productivity in Design by Front Loading and Simultaneous Engineering Using CAD Morphing

2020-04-14
2020-01-0496
Automotive OEMs are launching multiple products with ever reducing development time, balancing costs, quality and time to market, with clear focus on performance and weight. Platform architecture concepts, modular designs for differentiation etc. are strategies adopted by automotive OEMs towards shorter development cycles. Thus, concept generation phase of the digital product development process is expected to enable generation and evaluation of multiple concept architectures, carry out performance studies and largely focus on optimization, upfront. This Front loading of engineering and call for simultaneous engineering requires support in terms of quick and good CAD modeling with maturity. This paper proposes a process that focuses on generation and evaluation of multiple concepts, besides enabling optimization of concept before the detailed design phase kicks in.
Journal Article

Front Under Run Protection Device Strength Test Certification Through FE Simulations

2011-04-12
2011-01-0529
Passive safety regulations specify minimum safety performance requirements of vehicle in terms of protecting its occupants and other road users in accident scenarios. Currently for majority cases, the compliance of vehicle design to passive safety regulations is assessed through physical testing. With increased number of products and more comprehensive passive safety requirements, the complexity of certification is getting challenged due to high cost involved in prototype parts and the market pressures for early product introduction through reduced product development timelines. One of the ways for addressing this challenge is to promote CAE based certification of vehicle designs for regulatory compliance. Since accuracy of CAE predictions have improved over a period of time, such an approach is accepted for few regulations like ECE-R 66/01, AIS069 etc which involves only loadings of the structures.
Technical Paper

Virtual Development of Optimum Twist Beam Design Configuration for a New Generation Passenger Car

2007-08-05
2007-01-3562
It is customary to select a twist beam rear suspension for front wheel driven small and medium range passenger cars. Besides better primary / secondary ride comfort, roll stiffness tuning ability, ease of assembly & good packaging solutions than the conventional semi trailing arm/ rigid axle suspensions, twist beam suspension system accentuate the concentration required in placing & orienting the cross beam to achieve certain imperative kinematical characteristics. In order to make the solutions of the required kinematical targets viable, it is vital to have the packaging space and stress concentration within yield limits given the weight & cost targets. This paper presents the work done on twist beam type suspension for a new generation entry level B-Class hatchback vehicle developed. To reduce the time consumed in validation of different design proposals a virtual validation process was developed.
Technical Paper

A Simple, Cost Effective, Method of Evaluating Bump Steer and Brake Steer, and Achieving Correlation with ADAMS Analysis

2008-04-14
2008-01-0227
This paper proposes a cost effective method, with simple techniques, to evaluate Bump Steer and Brake Steer on a rigid axle vehicle under dynamic conditions. A relationship between calculated values, measured values and a subjective assessment of the vehicle lateral deviation is established. An array, of inter-relationship of the parameters such as offset of steering arm, draglink length, front spring stiffness, height of spring hanger bracket is done. Percentage of influence of the parameter change on the performance of the vehicle is evaluated and standard statistical analysis is used to arrive at inter-relationship of various parameters and ranking of their influence on lateral deviation of the vehicle under braking is established, there by resulting in reduction in iterative process. The results obtained display a good correlation with ADAMS Analysis to the tune of 90% and are in agreement with subjective assessment.
Technical Paper

Suspension Testing using Wheel Forces on a 3 DOF Road Load Simulator

2008-04-14
2008-01-0223
The use of Wheel Force Transducers (WFTs) to acquire data for laboratory simulation is becoming standard industry practice. However, in test rigs where we have only the suspension module and not the complete vehicle, does the reproduction of the orthogonal forces and moments at the wheel centre guarantee an accurate replication of the fatigue damage in the suspension components? The objective of this paper is to review the simulation methodology for a highly non-linear suspension in a 3 DOF (degree-of-freedom) suspension test rig in which the simulation was carried out using only the three orthogonal loads and vertical displacement. The damage at critical locations in the suspension is compared with that on the road and an assessment of the simulation using the WFT is made based on a comparison of the damage on the road vs. the rig.
Technical Paper

Development of IT Enabled System for Data Management to Meet EU Vehicle Recyclability Directives

2010-04-12
2010-01-0276
EU directive 2005/64/EC on type approval of motor vehicles with respect to their Reusability, Recyclability and Recoverability ( RRR ) requires vehicle manufacturers to put in place the necessary arrangements and procedures for Parts, Materials and Weight (PMW ) data collection from full chain of supply. This is required to perform the calculations of recyclability rate and recoverability rate in line with ISO 22628. Commonly practiced data collection methodologies included spreadsheet and use of internationally available IT support system for collection of material data. Data complexity and prohibitive cost for using Internationally available IT Support systems like IMDS (International Material Data System) has led to the in-house development of IT enabled Solution customizing Siemens PLM software product (Team centre Enterprise) and SAP (SRM suite).
Technical Paper

Development of Exhaust Silencer for Improved Sound Quality and Optimum Back Pressure

2010-04-12
2010-01-0388
For an automotive exhaust system, noise level and back pressure are the most important parameters for passenger comfort and engine performance respectively. The sound quality perception of the existing silencer design was unacceptable, although the back pressure measured was below the target limit. To improve the existing design, few concepts were prepared by changing the internal elements of silencer only. The design constraints were the silencer shell dimensions, volume of silencer, inlet pipe and outlet tailpipe positions, which had to be kept same as that of the existing base design. The sound quality signal replaying and synthesizing was performed to define the desired sound quality. The numerical simulation involves 3D computational fluid dynamics (CFD) with appropriate boundary condition having less numerical diffusions to predict the back pressure. The various silencer concepts developed with this preliminary analysis, was then experimentally verified with the numerical data.
Technical Paper

Experiments Planning for Robust Design through CAE

2006-10-31
2006-01-3518
This paper presents a systematic approach for designing an experiment in situations where expensive and time consuming computer simulations are used to evaluate product characteristics. In the presence of many design parameters, the critical step is to find the best possible experimental set up with minimum number of simulations. Usually in such situations, designers use their intuition and experience to carry out a number of simulation runs and choose the design that gives better performance. This intuitive approach can be considerably improved by using statistical methods. “Classical experimental designs” were compared with “space filling designs” in terms of their results and requirements. A typical clutch booster bracket is used as an example to demonstrate the methodology.
Technical Paper

Application of a Pre-Turbocharger Catalyst (PTC) on an Indian Multi Utility Diesel Vehicle for Meeting BS IV

2011-01-19
2011-26-0024
Diesel engines tend to operate on lower exhaust temperatures, compared to their gasoline counterparts. Exhaust emission control becomes a significant issue at these lower temperatures, as any catalytic converter needs certain light off temperature to commence functioning. The trend so far has been to move the catalytic converters closer to the exhaust manifold, in order to get the benefit of higher temperatures - but most of the applications are limited to the location available after the turbo chargers. This is due the fact that very minute and efficient catalyst is required, if it has to be placed before the turbo charger. This catalyst also needs to be extremely durable to take care of high exotherms which occur within the catalysts and also to prevent any possible damage to the turbo chargers.
Technical Paper

Performance Driven Package Feasibility of Side Restraints Using KBE Tools

2013-01-09
2013-26-0027
Integrating safety features may lead to changes in vehicle interior component designs. Considering this complexity, design guidelines have to take care of aspects which may help in package feasibility studies that consider systems performance requirements. Occupant restraints systems for protection in side crashes generally comprise of Side Airbag (SAB) and Curtain Airbag (IC). These components have to be integrated considering design and styling aspects of interior trims, seat contours and body structure for performance efficient package definition. In side crashes, occupant injury risk increases due to hard contact with intruding structure. This risk could be minimized by cushioning the occupant contact through provision of SAB and Inflatable IC. This paper explains the methodology for deciding the package definitions using Knowlwdge Based Engineering (KBE) tools.
Technical Paper

A Study on Improvements in Side Impact Test vs CAE Structural Correlation

2013-01-09
2013-26-0034
Computer Aided Engineering (CAE) plays an important role in the product development. Now a days major decisions like concept selection and design sign off are taken based on CAE. All the Original Equipment Manufacturers (OEMs) are putting consistent efforts to improve accuracy of the CAE results. In recent years confidence on CAE prediction has been increased mainly because of good correlation of CAE predictions with the test results. Defining proper correlation criteria and using a systematic approach helps significantly in building the overall confidence level for predictions given by CAE simulations. Representation of manufacturing effects on material properties and material failure in the simulation is still a big challenge for achieving a good CAE correlation. This paper describes side impact test vs CAE correlation. The important parameters affecting the CAE correlation were discussed.
Technical Paper

Challenges to Meet New Noise Regulations and New Noise Limits for M and N Category Vehicles

2013-01-09
2013-26-0107
New noise regulations, with reduced noise limits, have been proposed by UN-ECE. A new method which aims at representing urban driving of the vehicles more closely on roads is proposed and is considerably different from the existing one (IS 3028:1998). It is more complex; we also found that some of the low powered vehicles can not be tested as per this method. The paper proposes ways of improvement in the test method. The new noise reduction policy options will have a considerable impact on compliance of many categories of vehicles. Technological challenges, before the manufacturers, to meet all performance needs of the vehicle along with the cost of development will be critical to meet the new noise limits in the proposed time frame.
Technical Paper

Development of Cost Effective Footpad to Mitigate Lower Leg Injury During Anti Vehicle IED Blast

2013-04-08
2013-01-1246
Improvised Explosive Devices (IEDs) and Anti-Tank (AT) mines are a significant threat for military vehicles and their occupants. These explosive devices are designed for the destruction and damage of armored and other vehicles, by using them in battle fields on routes of army vehicles. The blast event results in effects like shockwave, fragments, fire, gases, blast overpressure as well as the vertical impulse load. A blast event affects occupants inside the vehicle in the form of various types of injuries (lower leg, spinal, chest, head etc) and trauma. The Lower leg is the foremost injured body region in a blast event. The term lower leg is used to designate the tibia, fibula and the foot/ankle complex in this paper. Detonations occurring under a vehicle produce high velocity floorboard flutter/deformation and transmit axial loads to lower leg and create injuries.
Technical Paper

Simulation of Restart Gradability of a Manual Transmission Vehicle Using AVL-CRUISE

2013-10-14
2013-01-2516
1 With increasing fuel price, the power train size is on a downward trend. For Fuel Economy maximization, the engine capacity and reduction ratios are getting reduced. So gradability of a vehicle is becoming a trade off factor for the power train size finalization in a car. At the same time OEMs are working hard to maintain profitability by reducing development and operational cost and time. In this complexly competitive scenario in automobile manufacturing, simulation is gaining an upper hand over actual testing as simulation consumes lesser time and resource as compared to actual testing. This paper is aimed at developing a simulation technique for restart or stop and start gradability which is a very critical parameter for finalization of engine torque characteristics and power train configuration. The simulation is done on AVL-CRUISE software.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
X