Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Performance Parameter Analysis of a Biodiesel-Fuelled Medium Duty Diesel Engine

2009-04-20
2009-01-0481
Biodiesel remains an alternative fuel of interest for use in diesel engines. A common characteristic of biodiesel, relative to petroleum diesel, is a lowered heating value (or energy content of the fuel). A lower heating value of the fuel would, presuming all other parameters are equal, result in decreased engine torque. Since engine torque is often user-demanded, the lower heating value of the fuel generally translates into increased brake specific fuel consumption. Several literature report this characteristic of biodiesel. In spite of the wealth of fuel consumption characteristic data available for biodiesel, it is not clear how other engine performance parameters may change with the use of biodiesel. Characterizing these parameters becomes complicated when considering the interactions of the various engine systems, such as a variable geometry turbocharger with exhaust gas recirculation.
Technical Paper

Biodiesel Later-Phased Low Temperature Combustion Ignition and Burn Rate Behavior on Engine Torque

2012-04-16
2012-01-1305
Finding a replacement for fossil fuels is critical for the future of automotive transportation. The compression ignition (CI) engine is an important aspect of everyday life by means of transportation and shipping of materials. Biodiesel is a viable augmentation for conventional diesel fuel in compression ignition engines. Biodiesel-fuelled diesel engines produce less particulate matter (PM) relative to conventional diesel and biodiesel has the ability to be a carbon dioxide (CO₂) neutral fuel, which may come under government regulation as a greenhouse gas. Although biodiesel is a viable diesel replacement and has certain emissions benefits, it typically also has a known characteristic of higher oxides of nitrogen (NOx) emissions relative to petroleum diesel. Advanced modes of combustion such as low temperature combustion (LTC) have attained much attention due to ever-increasing emission standards, and could also help reduce NOx in biodiesel.
Journal Article

The Impact of Biodiesel on Injection Timing and Pulsewidth in a Common-Rail Medium-Duty Diesel Engine

2009-11-02
2009-01-2782
Due to its ease of use in diesel engines, its presumably lower carbon footprint, and its potential as a renewable fuel, biodiesel has attracted considerable attention in technological development and research literature. Much literature is devoted to evaluating the injection and combustion characteristics of biodiesel fuel using unit injectors, where injection pressure and timing are regulated within the same unit. The use of common rail fuel systems, where fuel pressure is now equally governed to each injector (of a multi-cylinder engine), may change the conventionally accepted impact of biodiesel on injection and combustion characteristics. The objectives of this study are to characterize the responses of an electronically-controlled common-rail fuel injector (in terms of timing and duration) when delivering either 100% palm olein biodiesel or 100% petroleum diesel for a diesel engine, and correlate potential changes in injector characteristics to changes in combustion.
X