Refine Your Search

Topic

Search Results

Technical Paper

Space Station THC/IMV Development Test/Analysis Correlations and Flight Predictions

1997-07-14
972565
The International Space Station (ISS) Temperature and Humidity Control/Intermodule Ventilation (THC/IMV) system for the U.S. Lab provides required cooling air for the U.S. Lab and also provides “parasitic” cooling air for Node 1 and its attached elements. This scheme provides cooled air from the Lab THC directly to Node 1 and also to elements attached to Node 1, at different stages of Space Station assembly. A development test of the U.S. Lab and Node 1/attached elements' integrated THC/IMV ducting system was performed in the summer of 1995. This test included the U.S. Lab's development level Common Cabin Air Assembly (CCAA), which removes sensible and latent heat from the circulated and ducted cabin air. A referenced 1996 ICES Paper contains the initial correlation results. An analytical model has been developed, which has been used to predict flow and pressure drop performance of the system for several potential and actual changes from the Development Test configuration.
Technical Paper

Inlet Hot Gas Ingestion (HGI) and Its Control in V/STOL Aircraft

1997-10-01
975517
A successful methodology was developed at Boeing Company to investigate hot-gas ingestion in vertical take-off and landing aircraft. It involves sub-scale model testing using specialized test facilities and test techniques. The baseline characteristics of hot-gas ingestion (HGI) and the performance of various HGI reduction techniques were qualitatively evaluated in the Boeing Hover Research Facility. Potential HGI reduction devices were then further tested at scaled pressures and temperatures in HGI facilities at NASA Lewis, Rolls Royce and British Aerospace. One of the successful HGI reduction devices was flight tested. This paper describes the application of Boeing HGI reduction methodology to three specific aircraft configurations.
Technical Paper

Evolution to Lean Manufacturing A Case Study of Boeing of Spokane

1997-06-03
972235
The evolution of a manufacturing organization toward “Lean” manufacturing does not necessarily come cheaply or quickly. It is the experience at Boeing that technology and different visions can dramatically impact the evolutionary process-consuming great amounts of time and resources. The Boeing of Spokane case study, where aircraft floor panels are manufactured1, is but one of several case studies that suggests moving to “Lean” manufacturing is usually done in large steps, not small ones. These initial steps can be costly unless the systems (equipment and workforce) are flexible. Workforce flexibility is dependent on the attitude in the workforce as both touch and support labor move from their comfort zone to try new approaches and job descriptions. The workforce must be properly motivated to make the change. The equipment must also be flexible in adapting to new line layouts, product mixes, and process change or large cost penalties will be incurred.
Technical Paper

Non-Linear Aeroelastic Predictions for Transport Aircraft

1990-09-01
901852
A loosely coupled method for aeroelastic predictions of aircraft configurations is shown. This method couples an advanced structural analysis method with a CFD aerodynamics code in a modular fashion. This method can use almost any CFD code, so a validation of several such codes is shown to establish regions of validity for each code. Results from potential codes, an Euler code, and a Navier-Stokes code are shown in comparison with experiment. Viscous effects are included in most cases through a coupled boundary-layer solver or a turbulence model as appropriate.
Technical Paper

EVA Operations Using the Spacelab Logistics Pallet for Hardware Deliveries

2001-07-09
2001-01-2201
There are a large number of space structures, orbital replacement units (ORUs) and other components that must be transported to orbit on a regular basis for the assembly and maintenance of the International Space Station (ISS). Some of this hardware will be ferried on the Spacelab Logistics Pallet (SLP), which has a long and reliable history of space flight successes. The carrier is well used, well qualified, and very adaptable for repeated use in accommodating cargoes of various sizes and shapes. This paper presents an overview of past, present and future hardware design solutions that accommodate EVA operations on the SLP. It further demonstrates how analysis techniques and design considerations have influenced the hardware development, EVA operations, and compliance with human engineering requirements for the SLP.
Technical Paper

Specification Reform of Avionics Thermal Design Criteria – An F-15 Case Study

2001-07-09
2001-01-2156
Traditional thermal design criteria for avionics equipment are reviewed. Several studies have recently been conducted on the F-15 to assess accuracy of these design criteria. An overview of the study approach and results are presented. Specific topics investigated include: emergency cooling air provisions, cold start-up, hot start-up, normal and transient bay temperatures, and altitude design. The results indicate that many existing design criteria are overly conservative. The study findings suggest that reform of the existing thermal specification process is needed. Many of these reforms are applicable to the general aerospace industry and may result in significant acquisition cost savings as a result of the trend toward usage of commercial electronic parts. The reforms suggested include a new performance based thermal specification approach that increases emphasis on aircraft usage and frequency of occurrence. New transient design criteria are also recommended.
Technical Paper

An Investigation into the Use of Small, Flexible, Machine Tools to Support the Lean Manufacturing Environment

2001-09-10
2001-01-2566
Drilling fastener holes in large assemblies is traditionally accomplished through the use of large machine tools in order to obtain the accuracies required for the assembled part. Given recent advances of machine design and machine controller compensation, the accuracy of the motion platform can be corrected if the machine is repeatable. This coupled with the use of a vision system or touch probe to compensate for assembly variations, permit the use of smaller, more portable drilling systems. These smaller, more portable machine tools allow for lean manufacturing techniques to be incorporated into build processes, utilize less floor space, and in many cases are less costly than larger, permanent machine tools. This paper examines the feasibility of utilizing a small 5-axis, portable, drilling system for drilling the side panel skins on the F/A-18 E/F forward fuselage.
Technical Paper

F/A-18 E/F Outer Wing Lean Production System

2001-09-10
2001-01-2608
The Boeing F/A-18 E/F Program Wing Team, Lean Organization and Phantom Works have partnered to develop a “state of the art” lean production system for the Outer Wing that represents an evolutionary change in aircraft design and assembly methodology. This project is focused on improving quality, cycle and cost performance through the implementation of lean principles, technology integration and process improvements. This paper will discuss the approach taken to reach the end state objectives and the technologies and processes being developed to support it. Items to be discussed include lean principles and practices, new tooling concepts, improved part assembly techniques, advanced drilling systems, process flow enhancements and part handling/part delivery systems.
Technical Paper

Process Automation Through-Reality Graphics, Kitting, and Automated Panel Protection

1997-09-30
972806
This paper addresses process improvements through reality graphics (RG) aided by automated panel protection (APP) and tool kitting pertaining to automated wing riveting and fastening. This system provides an integrated display of numerical controlled media, automatic tool identification, and image files, combined with automated panel protection. Reality graphics (image files) within the NC program allow the machine operator to access portions of the NC program while attaching a support graphic. This would include safety hazards, unique panel differences, program start, and tool change information. Automated panel protection (APP) analyze process key characteristics, and perishable tool kits, and it monitors the installation of fasteners using multiple cameras mounted in strategic positions, taking real-time images. The APP detects incorrect tooling and possible panel damage, with little or no impact to the operational cycle time of the automated fastening equipment.
Technical Paper

Test Results of the Effects of Air Ionization on Cigarette Smoke Particulate Levels Within a Commercial Airplane

1992-07-01
921183
Passengers and flight attendants often notice a haze of smoke under the overhead stowage bins in aircraft cabins when cigarette smoking is allowed. As normally operated, the ventilation system in Boeing 737/757 aircraft does not rapidly remove this smoke haze. Air ionization systems from three vendors were tested in a 10 foot long Boeing 737/757 cabin test section with a cruise condition ventilation rate and two cigarette smoking rates to assess their effectiveness in removing smoke haze from the local breathing areas of passengers and flight attendants. Smoke particulate densities were monitored at five breathing areas and at an exit grill in the test section. All of the ionization systems significantly increased the rate of smoke removal after smoking had stopped, increasing the removal rate by about 25%. None of the systems showed a statistically significant reduction of smoke levels at the individual monitoring points while cigarettes were being smoked.
Technical Paper

Boeing Research Aerodynamic/Icing Tunnel Capabilities and Calibration

1994-02-01
940114
Flight testing of aircraft under natural icing conditions can be extremely tedious, time consuming, costly, and somewhat risky. However, such testing has been required to demonstrate the effectiveness of anti-icing systems and to certify new aircraft models. To reduce the need for extensive flight testing, Boeing has built a new icing tunnel that has the capability for developing ice shapes and evaluating anti-icing features on full scale sections of critical parts of the aircraft. The icing tunnel was made by modifying an existing 5 ft by 8 ft Boeing Wind Tunnel to add icing capabilities. This paper describes the design specifications, the tunnel capabilities, and the major equipment systems and presents the results of the tunnel calibration relative to the specified requirements.
Technical Paper

Development of Cold Working Process for 4340M Steel

1995-09-01
952167
A new process has been developed to cold work fastener holes on commercial aircraft flap tracks fabricated of 4340M steel. The process consists of pressing a high strength solid mandrel through a previously prepared hole in a defined manner. This process exhibits high tool life, low overall cost and eliminates the necessity for a final ream operation.
Technical Paper

Noise Implications for VTOL Development

1970-02-01
700286
Noise from the aircraft may prevent the establishment of VTOL ports near population centers-the locations which can provide a significant contribution to mass transportation. To determine how annoying these aircraft may be, a total community annoyance measure (TCAM) has been developed. The TCAM can indicate flight trajectories which minimize the annoyance of the aircraft and the type of aircraft which are acoustically acceptable for operations from a V/STOL port. Low disc loading rotors seem best for operation near terminals while low tip speed propellers are best for cruise.
Technical Paper

Advanced Graphite Composites in the 757/767

1980-09-01
801212
The new 757/767 transports will be the first Boeing Commercial aircraft to commit advanced graphite composite material to initial production. Composite materials, mainly fiberglass in an epoxy matrix, have been used in Boeing military and commercial aircraft in ever increasing amounts for the past twenty (plus) years. Recently, the state-of-the-art of Advanced Composites (graphite and graphite/Kevlar hybrids in an epoxy matrix) progressed to the level that it could be committed to full-scale production. This production commitment resulted in a multi-year, multi-million dollar development program. This was to assure technical and production readiness, and product reliability to meet the stringent performance and safety standards of modern commercial transport.
Technical Paper

Nozzle Development for the Upper Surface - Blown Jet Flap on the YC-14 Airplane

1974-02-01
740469
A discussion of wing-nozzle configuration development for the application of upper surface blowing to a STOL airplane is presented. The technical challenge is to achieve an integrated system which provides the desired performance for the low speed design conditions and also results in efficient operation during cruise. The resulting configuration is a complete integration of the propulsion system and airplane aerodynamics to achieve efficient operation at all regimes. This paper examines the major design parameters to be considered, describes a number of the configurations tested, and presents static and wind tunnel test results for these configurations. Concluding remarks are made relative to USB nozzle development.
Technical Paper

Design Trade-Offs that Determine Fastener Selection

1967-02-01
670886
Fastener selection entails two functions, a staff function to select a group of fasteners for consideration and a design function to select the most suitable fastener for a specific function. This paper itemizes in detail the considerations that enter into each function in selecting fasteners for commercial and military aircraft, military unmanned vehicles, and space vehicles. Characteristics of specific bolts and fasteners are also tabulated.
Technical Paper

Variable Geometry in a Supersonic Transport Aircraft

1967-02-01
670878
The variable-geometry features of the United States supersonic transport are described. Particular attention is given to the hardware development of those variable-geometry features unique to the supersonic transport. The design, development, and current status of a direct lift control sys tern, the supersonic internal-external compression inlet, and the full-scale wing pivot are described.
Technical Paper

Radar Detection of Turbulence in the Upper Troposphere

1966-02-01
660187
Encounters of jet aircraft with high altitude turbulence prompted the investigation of various techniques to probe and locate turbulence in areas lacking particles (rain drops, hailstones). A promising technique is to measure the radio refractive eddies and gradients by radar backscatter. Radio refractive index eddies can, in principle, be found where an atmosphere characterized by a nonadiabatic lapse rate of refractive index is stirred up by turbulence. A sequence of VHF backscatter experiments which will hopefully lead up to an airborne CAT detector are presented in this paper.
Technical Paper

A Progress Report on the Development of an Augmentor Wing Jet STOL Research Aircraft

1971-02-01
710757
The joint development of an augmentor wing jet STOL research aircraft by NASA and the Canadian Government Department of Industry, Trade, and Commerce has progressed to the point that the design of the modifications to the de Havilland C-8A Buffalo are complete and the engines are being tested. The predicted performance shows that the airplane will be able to take off and land in less than 1500 ft. Simulation studies indicate that the handling qualities of the airplane, with stability augmentation, will be acceptable for STOL research missions.
Technical Paper

Aircraft Noise, Its Source and Reduction

1971-02-01
710308
Since the advent of the turbojet engine, there has been much research by aircraft and engine manufacturers into the source of aircraft noise and its reduction. A review of this research is presented delineating the transition from turbojet engines to turbofan engines to the high by-pass ratio engines being introduced today, and the progress that has been made. Application of the current state-of-the-art to existing airplanes through engine replacement, nacelle retrofit, and flight procedures are also discussed.
X