Refine Your Search

Topic

Author

Search Results

Journal Article

Impact of Viscosity Modifiers on Gear Oil Efficiency and Durability: Part II

2013-04-08
2013-01-0299
This paper outlines the second part in a series on the effect of polymeric additives commonly known as viscosity modifiers (VM) or viscosity index improvers (VII) on gear oil efficiency and durability. The main role of the VM is to improve cold temperature lubrication and reduce the rate of viscosity reduction as the gear oil warms to operating temperature. However, in addition to improved operating efficiency across a broad temperature range compared to monograde fluids the VM can impart a number of other significant rheological improvements to the fluid [1]. This paper expands on the first paper in the series [2], covering further aspects in fluid efficiency, the effect of VM chemistry on these and their relationship to differences in hypoid and spur gear rig efficiency testing. Numerous VM chemistry types are available and the VM chemistry and shear stability is key to fluid efficiency and durability.
Technical Paper

Development of Next-Generation Automatic Transmission Fluid Technology

2007-10-29
2007-01-3976
Global original equipment manufacturers (OEMs) have requested lower viscosity automatic transmission fluid (ATF) for use in conventional and 6-speed automatic transmissions (AT) to meet growing demands for improved fuel economy. While lower-viscosity ATF may provide better fuel economy by reducing churning losses, other key performance attributes must be considered when formulating lower viscosity ATF(1,2). Gear and bearing performance can be key concerns with lower-viscosity ATFs due to reduced film thickness at the surfaces. Long-term anti-shudder performance is also needed to enable the aggressive use of controlled slip torque converter clutches that permit better fuel economy. And, friction characteristics need to be improved for higher clutch holding capacity and good clutch engagement performance. This paper covers the development of next-generation, low-viscosity ATF technology, which provides optimum fuel economy along with wear and friction durability.
Technical Paper

A Statistical Review of Available Data Correlating the BMW and Ford Intake Valve Deposit Tests

1998-05-04
981365
A 100-hour engine dynamometer test for intake valve deposits (IVD) which uses a Ford 2.3L engine was developed by the Coordinating Research Council (CRC). Recently, this test has been approved by the American Society for Testing and Materials (ASTM) as Test Method D 6201-97. Since this test offers improvements in test variability, duration, and cost, it is expected to replace ASTM D 5500-94, a 16,000-km vehicle test run using a BMW 318i, as the key performance test for the Certification of Gasoline Deposit Control Additives by the EPA Final Rule. As a step in the replacement process, a correlation between valve deposit levels for the CRC 2.3L Ford IVD test and ASTM D 5500 BMW IVD test must be determined. This paper provides a statistical review of available data in an attempt to provide such a correlation.
Technical Paper

Using Intake Valve Deposit Cleanup Testing as a Combustion Chamber Deposit Discriminator

1998-10-19
982714
Carefully controlled intake valve deposit (IVD) cleanup testing is found to be an effective method for differentiating the effect of the deposit control additives on combustion chamber deposits (CCD). The IVD buildup procedure produces a consistent initial level of CCD that the cleanup additive, the additive of interest, continues to build on until the end of the cleanup test. This “end of cleanup” CCD is found to be as repeatable and differentiable a measurement as tests run under the more common “keep clean” type operation. While IVD cleanup testing induces a mid-test disturbance in the form of the end of buildup measurement, it aligns well with two key CCD protocols in terms of the higher additive treat rates used and the extended total test length. In an analysis of results from IVD cleanup tests run using four different engine/vehicle procedures on seven different additives, several findings stood out.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

The KA24E Engine Test for ILSAC GF-3 Part 1: Engine Design, Operating Conditions and Wear Mechanisms

1998-10-19
982625
The Nissan KA24E engine test is designated to replace the Ford Sequence VE engine test as the low temperature valve train wear requirement for ILSAC (International Lubricant Standardization and Approval Committee) GF-3. The KA24E (recently designated the Sequence IV A) represents much of the current world-wide material and design technology while retaining the sliding cam/follower contact found in earlier engine designs. The work presented here is the first of two reports. In this first report, the physical and chemical environment the KA24E engine presents a lubricant is characterized and compared to those of the Sequence VE engine. Valve train materials and wear modes are investigated and described. Although chemical analysis of drain oils indicate the KA24E procedure does not degrade the lubricant to the extent seen in the Sequence VE test, valve train wear appears to proceed in a similar manner in both tests.
Technical Paper

The KA24E Engine Test for ILSAC GF-3.Part 2. Valve Train Wear Response to Formulation Variables

1998-10-19
982626
The work presented here is the second of two papers investigating the KA24E engine test. The first paper characterized the KA24E engine in terms of the physical and chemical operating environment it presents to lubricants. The authors investigated oil degradation and wear mechanisms, and examined the differences between the KA24E and the Sequence VE engine tests. It was shown that while the KA24E does not degrade the lubricant to the extent that occurs in the Sequence VE, wear could be a serious problem if oils are poorly formulated. This second paper examines the wear response of the KA24E to formulation variables. A statistically designed matrix demonstrated that the KA24E is sensitive to levels of secondary zinc dialkyldithiophosphate (ZDP), dispersant and calcium sulfonate detergent. This matrix also showed that the KA24E appears to have good repeatability for well formulated oils and is a reasonable replacement for the wear component of the Sequence VE.
Technical Paper

Next Generation Torque Control Fluid Technology, Part IV: Using a New Split-μ Simulation Test for Optimizing Friction Material-Lubricant Hardware Systems

2010-10-25
2010-01-2230
Wet clutch friction devices are the primary means by which torque is transmitted through many of today's modern vehicle drivelines. These devices are used in automatic transmissions, torque vectoring devices, active on-demand vehicle stability systems and torque biasing differentials. As discussed in a previous SAE paper ( 2006-01-3271 - Next Generation Torque Control Fluid Technology, Part II: Split-Mu Screen Test Development) a testing tool was developed to correlate to full-vehicle split-mu testing for limited slip differential applications using a low speed SAE #2 friction test rig. The SAE #2 Split-Mu Simulation is a full clutch pack component level friction test. The purpose of this test is to allow optimization of the friction material-lubricant hardware system in order to deliver consistent friction performance over the life of the vehicle.
Technical Paper

An Extended 35VQ-25 Vane Pump Test as a Viable Method for Differentiating Anti-Wear Hydraulic Fluid Performance

2002-03-19
2002-01-1403
This paper describes the development of an extended vane pump test procedure utilizing the Eaton® 35VQ-25 vane pump. Evaluation of two commercial Zinc Dithiophosphate containing and two commercial non Zinc (ashless) hydraulic fluids are also described. Results show that extending the test time allows differentiation among fluids which give comparable performance in the standard 50 hour test. System cleanliness, as well as pump weight loss, must be used in the performance assessment.
Technical Paper

Developing Next Generation Axle Fluids: Part I - Test Methodology to Measure Durability and Temperature Reduction Properties of Axle Gear Oils

2002-05-06
2002-01-1691
Light trucks and sport utility vehicles (SUVs) have become extremely popular in the United States in recent years, but this shift to larger passenger vehicles has placed new demands upon the gear lubricant. The key challenge facing vehicle manufacturers in North America is meeting government-mandated fuel economy requirements while maintaining durability. Gear oils must provide long-term durability and operating temperature control in order to increase equipment life under severe conditions while maintaining fuel efficiency. This paper describes the development of a full-scale light duty axle test that simulates a variety of different driving conditions that can be used to measure temperature reduction properties of gear oil formulations. The work presented here outlines a test methodology that allows gear oil formulations to be compared with each other while accounting for axle changes due to wear and conditioning during testing.
Technical Paper

Developing Next Generation Axle Fluids – Part II - Systematic Formulating Approach

2002-05-06
2002-01-1692
Light trucks and sport utility vehicles (SUVs) have become extremely popular in the United States in recent years, but this shift to larger passenger vehicles has placed new demands upon the gear lubricant. The key challenge facing vehicle manufacturers in North America is meeting government-mandated fuel economy requirements while maintaining the durability required for severe service. In light truck/SUV applications, gear oils must provide operating temperature control under extreme conditions such as trailer-towing. Higher operating temperatures for prolonged periods can adversely affect metallurgical properties and reduce fluid film thickness, both of which can lead to premature equipment failures. In our view, operating temperature is an important indicator of durability. Unfortunately, lubricants optimized for temperature control do not always provide the best fuel economy.
Technical Paper

Jet Fuel Thermal Stability Additives - Electrical Conductivity and Interactions with Static Dissipator Additive

2002-05-06
2002-01-1652
The primary goal of the USAF JP-8+100 thermal stability additive (TSA) program is to increase the heat-sink capacity of JP-8 fuel by 50%. Current engine design is limited by a fuel nozzle temperature of 325°F (163°C); JP-8+100 has been designed to allow a 100°F increase in nozzle temperatures up to 425°F (218°C) without serious fuel degradation leading to excessive deposition. Previous studies have shown that TSA formulations increase the electrical conductivity of base jet fuel. In the present paper, further characterization of this phenomenon is described, as well as interactions of newer TSAs with combinations of SDA and other surface-active species in hydrocarbons, will be discussed.
Technical Paper

Jet Fuel Thermal Stability - Lab Testing for JP8+100

2002-05-06
2002-01-1651
The continued development of more powerful aviation turbine engines has demanded greater thermal stability of the fuel as a high temperature heat sink. This in turn requires better definition of the thermal stability of jet fuels. Thermal stability refers to the deposit-forming tendency of the fuel. It is generally accepted that dissolved oxygen initiates the deposition process in freshly refined fuels. While there are many tests that are designed to measure or assess thermal stability, many of these either do not display sufficient differentiation between fuels of average stability (JP-8) and intermediate stability (JP-8+100, JP-TS), or require large test equipment, large volumes of fuels and/or are costly. This paper will discuss the use of three laboratory tests as “concept thermal stability prediction” tools with aviation fuels, including Jet A-1 or JP-8, under JP8+100 test conditions.
Technical Paper

Lubricity and Injector Pump Wear Issues with E diesel Fuel Blends

2002-10-21
2002-01-2849
The search for alternative energy sources, particularly renewable sources, has led to increased activity in the area of ethanol blended diesel fuel, or E diesel. E diesel offers potential benefits in reducing greenhouse gases, reducing dependence on crude oil and reducing engine out emissions of particulate matter. However, there are some concerns about the use of E diesel in the existing vehicle fleet. One of the chief concerns of the use of E diesel is the affect of the ethanol on the lubricating properties of the fuel and the potential for fuel system wear. Additive packages that are used to formulate E diesel fuels can improve fuel lubricity and prevent abnormal fuel system wear. This work studies the lubricity properties of several E diesel blends and the diesel fuels that are used to form them. In addition to a variety of bench scale lubricity tests, injector pump tests were performed as an indicator of long term durability in the field.
Technical Paper

Extended-Drain ATF Field Testing in City Transit Buses

2003-05-19
2003-01-1985
City transit buses are a severe environment for an automatic transmission fluid. The fluid must endure very high operating temperatures because of the use of brake retarders, frequent stop-and-go driving, and numerous shifts. There is an increasing trend toward the use of extended-drain, synthetic-based ATFs for such severe service applications. This paper documents a field trial with both synthetic and petroleum-based ATFs at a large municipal bus fleet in Southern California. Three different commercial ATFs, made with either API Group 2, 3, or 4 base oils, respectively, were compared after roughly 80,000 km. and one year of operation. Because of different additive packages in each fluid, not all of the results can be explained by base oil effects alone. However, the base oil is certainly a dominant contributor to the finished fluid performance. The following four variables were monitored by used oil analysis: iron wear, copper wear, viscosity change, and acid number change.
Technical Paper

The Impact of Passenger Car Motor Oils on Emissions Performance

2003-05-19
2003-01-1988
Throughout the evolution of the automobile, passenger car motor oils have been developed to address issues of wear, corrosion, deposit formation, friction, and viscosity stability. As a result, the internal combustion engines are now developed with the expectation that the lubricants to be used in them will deliver certain performance attributes. Metallurgies, clearances, and built-in stresses are all chosen with certain expectations from the lubricant. A family of chemicals that has been universally used in formulating passenger car motor oils is zinc dithiophosphates (ZDPs). ZDPs are extremely effective at protecting highly stressed valve train components against wear failure, especially in engine designs with a sliding contact between cams and followers. While ZDPs' benefits on wear control are universally accepted, ZDPs have been identified as the source of phosphorus, which deactivates noble metal aftertreatment systems.
Technical Paper

Next Generation Torque Control Fluid Technology, Part II: Split-Mu Screening Test Development

2006-10-16
2006-01-3271
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper, we will describe a split-mu vehicle test and the development of a split-mu screening test. The screening test uses the SAE#2 friction test rig and shows how results from this test align with those from actual vehicle testing.
Technical Paper

Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Screening Test Development

2006-10-16
2006-01-3270
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation rates of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system in order to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper we will describe the development of a break-away friction screening test using a Full-Scale Low-Velocity Friction Apparatus (FS-LVFA). Additionally, we will illustrate how this screening test can be used to investigate the fundamental friction material-lubricant interactions that occur in continuously engaged limited slip differentials.
Technical Paper

Balancing Extended Oil Drain With Extended Equipment Life

1996-05-01
961110
All automotive gear oils must satisfy a series of standard industry or Original Equipment Manufacturer (OEM) tests. These usually include bench, axle dynamometer, and field tests. However, product development testing must extend beyond satisfying standard test protocols. This is especially true as increased emphasis is placed on extending oil drain intervals and increasing equipment life in the face of greater performance demands through new heavy-duty vehicle designs. End-users ultimately benefit from extended oil drain intervals and increased equipment life. However, the effort to achieve both initiatives will prove successful only through careful development and selection of the proper performance additives and base fluids. Also, a broad focus must be maintained to satisfy all lubricant requirements. These requirements build on a solid base of standard features and include new features that stretch the current envelope of gear oil performance.
Technical Paper

Enhancement of the Sequence IIIG by the Study of Oil Consumption

2004-06-08
2004-01-1893
The Sequence IIIG is a newly developed 100 hour test used to evaluate the performance of crankcase engine oils in the areas of high temperature viscosity increase, wear, deposits, pumpability, and ring sticking for the North American GF-4 standard. Data from the ASTM Precision Matrix, completed in the spring of 2003, along with early reference data from the Lubricant Test Monitoring System (LTMS) showed unexpected test results for selected oils and indicated that percent viscosity increase and pumpability were highly correlated with oil consumption. This correlation led to an intensive study of the factors that influence oil consumption and an attempt to compensate for non-oil related oil consumption through a model based adjustment of the results. The study and scrutiny of the IIIG data has led to more uniform oil consumption in the test and improved test precision, and has eliminated the need for a correction equation based on non-oil related oil consumption.
X