Refine Your Search

Topic

Search Results

Journal Article

Impact of Lubricating Oil Condition on Exhaust Particulate Matter Emissions from Light Duty Vehicles

2010-05-05
2010-01-1560
Limited technical studies to speciate particulate matter (PM) emissions from gasoline fueled vehicles have indicated that the lubricating oil may play an important role. It is unclear, however, how this contribution changes with the condition of the lubricant over time. In this study, we hypothesize that the mileage accumulated on the lubricant will affect PM emissions, with a goal of identifying the point of lubricant mileage at which PM emissions are minimized or at least stabilized relative to fresh lubricant. This program tested two low-mileage Tier 2 gasoline vehicles at multiple lubricant mileage intervals ranging from zero to 5000 miles. The LA92 cycle was used for emissions testing. Non-oxygenated certification fuel and splash blended 10% and 20% ethanol blends were used as test fuels.
Technical Paper

Extending Injector Life in Methanol-Fueled DDC Engines Through Engine Oil and Fuel Additives

1990-10-01
902227
Considerable development effort has shown that conventional diesel engine lubricating oil specifications do not define the needs for acceptable injector life in methanol-fueled, two-stroke cycle diesel engines. A cooperative program was undertaken to formulate an engine oil-fuel additive system which was aimed at improving performance with methanol fueling. The performance feature of greatest concern was injector tip plugging. A Taguchi matrix using a 100 hour engine test was designed around an engine oil formulation which had performed well in a 500 hour engine test using a simulated urban bus cycle. Parameters investigated included: detergent level and type, dispersant choice, and zinc dithiophosphate level. In addition, the influence of a supplemental fuel additive was assessed. Analysis of the Taguchi Matrix data shows the fuel additive to have the most dramatic beneficial influence on maintaining injector performance.
Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Journal Article

Engine Oil Fuel Economy Testing - A Tale of Two Tests

2017-03-28
2017-01-0882
Fuel economy is not an absolute attribute, but is highly dependent on the method used to evaluate it. In this work, two test methods are used to evaluate the differences in fuel economy brought about by changes in engine oil viscosity grade and additive chemistry. The two test methods include a chassis dynamometer vehicle test and an engine dynamometer test. The vehicle testing was conducted using the Federal Test Procedure (FTP) testing protocol while the engine dynamometer test uses the proposed American Society for Testing and Materials (ASTM) Sequence VIE fuel economy improvement 1 (FEI1) testing methodology. In an effort to improve agreement between the two testing methods, the same model engine was used in both test methods, the General Motors (GM) 3.6 L V6 (used in the 2012 model year Chevrolet™ Malibu™ engine). Within the lubricant industry, this choice of engine is reinforced because it has been selected for use in the proposed Sequence VIE fuel economy test.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

A Comprehensive Examination of the Effect of Ethanol-Blended Gasoline on Intake Valve Deposits in Spark-Ignited Engines

2007-10-29
2007-01-3995
Ethanol-gasoline blends are widely understood to present certain technical challenges to engine operation. Despite widespread use of fuels ranging from E5 (5% ethanol in gasoline) in some European countries to E10 (10% ethanol) in the United States to E100 (100% ethanol; “alcool”) in Brazil, there are certain subjects which have only anecdotally been examined. This paper examines two such issues: the effect of ethanol on intake valve deposits (IVD) and the impact of fuel additive on filter plugging (a measure of solubility). The effect of ethanol on IVD is studied along two lines of investigation: the effect of E10 in a multi-fuel data set carried out in the BMW 318i used for EPA and CARB certification, and the effect of varying ethanol content from 0% to 85% in gasoline carried out in a modern flex-fuel vehicle.
Technical Paper

A Statistical Review of Available Data Correlating the BMW and Ford Intake Valve Deposit Tests

1998-05-04
981365
A 100-hour engine dynamometer test for intake valve deposits (IVD) which uses a Ford 2.3L engine was developed by the Coordinating Research Council (CRC). Recently, this test has been approved by the American Society for Testing and Materials (ASTM) as Test Method D 6201-97. Since this test offers improvements in test variability, duration, and cost, it is expected to replace ASTM D 5500-94, a 16,000-km vehicle test run using a BMW 318i, as the key performance test for the Certification of Gasoline Deposit Control Additives by the EPA Final Rule. As a step in the replacement process, a correlation between valve deposit levels for the CRC 2.3L Ford IVD test and ASTM D 5500 BMW IVD test must be determined. This paper provides a statistical review of available data in an attempt to provide such a correlation.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

How Polymer Architecture Affects Permanent Viscosity Loss of Multigrade Lubricants

1998-10-19
982638
Multigrade automotive lubricants contain polymeric viscosity modifiers which enable the oil to provide adequate hydrodynamic lubrication at high temperatures and good starting/pumping performance at low temperatures. Under operating conditions in engines, transmissions and gear boxes, polymeric additives undergo both temporary and permanent viscosity loss. The former is caused by flow orientation and the latter by molecular chain scission. Whatever the mechanism, original equipment manufacturers are interested in maintaining a minimum level of hydrodynamic viscosity from oil change to oil change. This is often expressed as a “stay-in-grade” requirement. Commercial viscosity modifiers (VM) span a wide range of chemistries and molecular architectures.
Technical Paper

Next Generation Torque Control Fluid Technology, Part III: Using an Improved Break-Away Friction Screen Test to Investigate Fundamental Friction Material-Lubricant Interactions

2010-10-25
2010-01-2231
Wet clutch friction devices are the primary means by which torque is transmitted in many of today's modern vehicle drivelines. These devices are used in automatic transmissions, torque vectoring devices, active on-demand vehicle stability systems, and torque biasing differentials. As discussed in a previous SAE paper ( 2006-01-3270 - Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Slip Screen Test Development), a testing tool was developed to simulate a limited slip differential break-away event using a Full Scale-Low Velocity Friction Apparatus (FS-LVFA). The purpose of this test was to investigate the fundamental interactions between lubricants and friction materials. The original break-away friction screen test, which used actual vehicle clutch plates and a single friction surface, proved a useful tool in screening new friction modifier technology.
Technical Paper

Lubricant Requirements of an Advanced Designed High Performance, Fuel Efficient Low Emissions V-6 Engine

2001-05-07
2001-01-1899
Modern high power density gasoline fueled engines place an ever-increasing demand on the engine lubricant. In this study, it is shown that advances in engine design to increase performance, improve fuel economy and lower emissions have outpaced the development of typical commercial engine lubricants. Advanced designed engines began to experience oil starvation as a result of a combination of driving cycles, oil quality and poor maintenance practices. The cause was traced to excessive increases in borderline pumping viscosity as measured by MRV TP-1 (ASTM D4684). Used oil analysis for MRV TP-1 showed viscosity greatly increased in excess of stay-in-grade requirements and in many cases the crankcase lubricant was solid at the temperature appropriate for its viscosity grade. However, at the same time CCS values were in grade or only slightly (1W grade) elevated.
Technical Paper

An Extended 35VQ-25 Vane Pump Test as a Viable Method for Differentiating Anti-Wear Hydraulic Fluid Performance

2002-03-19
2002-01-1403
This paper describes the development of an extended vane pump test procedure utilizing the Eaton® 35VQ-25 vane pump. Evaluation of two commercial Zinc Dithiophosphate containing and two commercial non Zinc (ashless) hydraulic fluids are also described. Results show that extending the test time allows differentiation among fluids which give comparable performance in the standard 50 hour test. System cleanliness, as well as pump weight loss, must be used in the performance assessment.
Technical Paper

Developing Next Generation Axle Fluids: Part I - Test Methodology to Measure Durability and Temperature Reduction Properties of Axle Gear Oils

2002-05-06
2002-01-1691
Light trucks and sport utility vehicles (SUVs) have become extremely popular in the United States in recent years, but this shift to larger passenger vehicles has placed new demands upon the gear lubricant. The key challenge facing vehicle manufacturers in North America is meeting government-mandated fuel economy requirements while maintaining durability. Gear oils must provide long-term durability and operating temperature control in order to increase equipment life under severe conditions while maintaining fuel efficiency. This paper describes the development of a full-scale light duty axle test that simulates a variety of different driving conditions that can be used to measure temperature reduction properties of gear oil formulations. The work presented here outlines a test methodology that allows gear oil formulations to be compared with each other while accounting for axle changes due to wear and conditioning during testing.
Technical Paper

Jet Fuel Thermal Stability - Lab Testing for JP8+100

2002-05-06
2002-01-1651
The continued development of more powerful aviation turbine engines has demanded greater thermal stability of the fuel as a high temperature heat sink. This in turn requires better definition of the thermal stability of jet fuels. Thermal stability refers to the deposit-forming tendency of the fuel. It is generally accepted that dissolved oxygen initiates the deposition process in freshly refined fuels. While there are many tests that are designed to measure or assess thermal stability, many of these either do not display sufficient differentiation between fuels of average stability (JP-8) and intermediate stability (JP-8+100, JP-TS), or require large test equipment, large volumes of fuels and/or are costly. This paper will discuss the use of three laboratory tests as “concept thermal stability prediction” tools with aviation fuels, including Jet A-1 or JP-8, under JP8+100 test conditions.
Technical Paper

Lubricity and Injector Pump Wear Issues with E diesel Fuel Blends

2002-10-21
2002-01-2849
The search for alternative energy sources, particularly renewable sources, has led to increased activity in the area of ethanol blended diesel fuel, or E diesel. E diesel offers potential benefits in reducing greenhouse gases, reducing dependence on crude oil and reducing engine out emissions of particulate matter. However, there are some concerns about the use of E diesel in the existing vehicle fleet. One of the chief concerns of the use of E diesel is the affect of the ethanol on the lubricating properties of the fuel and the potential for fuel system wear. Additive packages that are used to formulate E diesel fuels can improve fuel lubricity and prevent abnormal fuel system wear. This work studies the lubricity properties of several E diesel blends and the diesel fuels that are used to form them. In addition to a variety of bench scale lubricity tests, injector pump tests were performed as an indicator of long term durability in the field.
Technical Paper

Engine Oil Effects on the Friction and Emissions of a Light-Duty, 2.2L Direct - Injection - Diesel Engine Part 1 - Engine Test Results

2002-10-21
2002-01-2681
The effects of lubricating oil on friction and engine-out emissions in a light-duty 2.2L compression ignition direct injection (CIDI) engine were investigated. A matrix of test oils varying in viscosity (SAE 5W-20 to 10W-40), friction modifier (FM) level and chemistry (MoDTC and organic FM), and basestock chemistry (mineral and synthetic) was investigated. Tests were run in an engine dynamometer according to a simulated, steady state FTP-75 procedure. Low viscosity oils and high levels of organic FM showed benefits in terms of fuel economy, but there were no significant effects observed with the oils with low MoDTC concentration on engine friction run in this program. No significant oil effects were observed on the gaseous emissions of the engine. PM emissions were analyzed for organic solubles and insolubles. The organic soluble fraction was further analyzed for the oil and fuel soluble portions.
Technical Paper

The Single Technology Matrix Process For Base Oil Interchange

2002-10-21
2002-01-2676
The Engine Oil Industry Base Oil Interchange (BOI) and Viscosity Grade Read Across (VGRA) guidelines developed by the American Petroleum Institute (API) provide a means to significantly reduce the time to market for current technology engine oils. This process has several advantages including the public display of data and a consensus evaluation of the submitted data. The process also has several limitations including timeliness of the consensus process, and the applicability and flexibility of an all-encompassing, industry-wide guideline. An enhancement to the all-encompassing, industry-wide consensus process is the Single Technology Matrix (STM). The idea behind this approach is to use sufficient data from a single technology to develop and use BOI for that specific technology. The advantages of the STM include improved technical merit, timeliness and flexibility in establishing BOI.
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

2003-05-19
2003-01-1963
The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
Technical Paper

Balancing Extended Oil Drain With Extended Equipment Life

1996-05-01
961110
All automotive gear oils must satisfy a series of standard industry or Original Equipment Manufacturer (OEM) tests. These usually include bench, axle dynamometer, and field tests. However, product development testing must extend beyond satisfying standard test protocols. This is especially true as increased emphasis is placed on extending oil drain intervals and increasing equipment life in the face of greater performance demands through new heavy-duty vehicle designs. End-users ultimately benefit from extended oil drain intervals and increased equipment life. However, the effort to achieve both initiatives will prove successful only through careful development and selection of the proper performance additives and base fluids. Also, a broad focus must be maintained to satisfy all lubricant requirements. These requirements build on a solid base of standard features and include new features that stretch the current envelope of gear oil performance.
Technical Paper

Enhancement of the Sequence IIIG by the Study of Oil Consumption

2004-06-08
2004-01-1893
The Sequence IIIG is a newly developed 100 hour test used to evaluate the performance of crankcase engine oils in the areas of high temperature viscosity increase, wear, deposits, pumpability, and ring sticking for the North American GF-4 standard. Data from the ASTM Precision Matrix, completed in the spring of 2003, along with early reference data from the Lubricant Test Monitoring System (LTMS) showed unexpected test results for selected oils and indicated that percent viscosity increase and pumpability were highly correlated with oil consumption. This correlation led to an intensive study of the factors that influence oil consumption and an attempt to compensate for non-oil related oil consumption through a model based adjustment of the results. The study and scrutiny of the IIIG data has led to more uniform oil consumption in the test and improved test precision, and has eliminated the need for a correction equation based on non-oil related oil consumption.
X