Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Effect of Viscosity Index on the Efficiency of Transmission Lubricants

2009-11-02
2009-01-2632
The world is firmly focused on reducing energy consumption and on increasingly stringent regulations on CO2 emissions. Examples of regulatory changes include the new United States Environmental Protection Agency's (U.S. EPA) fuel economy test procedures which were required beginning with the 2008 model year for vehicles sold in the US market. These test procedures include testing at higher speeds, more aggressive acceleration and deceleration, and hot-weather and cold-temperature testing. These revised procedures are intended to provide an estimate that more accurately reflects what consumers will experience under real world driving conditions. The U.S.
Journal Article

Controlling Lubricant-Derived Phosphorous Deactivation of the Three-Way Catalysts Part 2: Positive Environmental Impact of Novel ZDP Technology

2010-10-25
2010-01-2257
Prior technical work by various OEMs and lubricant formulators has identified lubricant-derived phosphorus as a key element capable of significantly reducing the efficiency of modern emissions control systems of gasoline-powered vehicles ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ). However, measuring the exact magnitude of the detriment is not simple or straightforward exercise due to the many other sources of variation which occur as a vehicle is driven and the catalyst is aged ( 1 ). This paper, the second one in the series of publications, examines quantitative sets of results generated using various vehicle and exhaust catalyst testing methodologies designed to follow the path of lubricant-derived phosphorous transfer from oil sump to exhaust catalytic systems ( 1 ).
Journal Article

Impact of Lubricating Oil Condition on Exhaust Particulate Matter Emissions from Light Duty Vehicles

2010-05-05
2010-01-1560
Limited technical studies to speciate particulate matter (PM) emissions from gasoline fueled vehicles have indicated that the lubricating oil may play an important role. It is unclear, however, how this contribution changes with the condition of the lubricant over time. In this study, we hypothesize that the mileage accumulated on the lubricant will affect PM emissions, with a goal of identifying the point of lubricant mileage at which PM emissions are minimized or at least stabilized relative to fresh lubricant. This program tested two low-mileage Tier 2 gasoline vehicles at multiple lubricant mileage intervals ranging from zero to 5000 miles. The LA92 cycle was used for emissions testing. Non-oxygenated certification fuel and splash blended 10% and 20% ethanol blends were used as test fuels.
Journal Article

Demonstration of the Ability of a Novel Engine Oil to Remove Hydrocarbon Deposits in Two-Stroke Engines

2010-09-28
2010-32-0122
In a two-stroke engine, carbon is a natural by-product of incomplete combustion. Fuel and oil quality vary leading to various degrees of carbon deposit build up on critical engine parts over time. If the carbon deposits are left on engine components and allowed to accumulate, it can lead to reduced horsepower, reduced fuel economy, increased emissions, and in the worst case the deposits can cause engine damage. A novel two-stroke engine oil was developed specifically to remove these deposits, restore the operating efficiency, and potentially lengthen the useful life of the two-stroke engine. In order to prove the restorative ability of this novel technology, dynamometer tests and field trials were conducted. In the dynamometer portion, the oil was tested in two of the standard TC-W3® certification tests for marine engine oils. The first was the OMC 40HP and the second was the OMC 70HP test.
Journal Article

Extending SAE J300 to Viscosity Grades below SAE 20

2010-10-25
2010-01-2286
The SAE Engine Oil Viscosity Classification (EOVC) Task Force has been gathering data in consideration of extending SAE J300 to include engine oils with high temperature, high shear rate (HTHS) viscosity below the current minimum of 2.6 mPa⋅s for the SAE 20 grade. The driving force for doing so is fuel economy, although it is widely recognized that hardware durability can suffer if HTHS viscosity is too low. Several Japanese OEMs have expressed interest in revising SAE J300 to allow official designation of an engine oil viscosity category with HTHS viscosity below 2.6 mPa⋅s to enable the development of ultra-low-friction engines in the future. This paper summarizes the work of the SAE EOVC Low Viscosity Grade Working Group comprising members from OEMs, oil companies, additive companies and instrument manufacturers to explore adoption of one or more new viscosity grades.
Technical Paper

Extending Injector Life in Methanol-Fueled DDC Engines Through Engine Oil and Fuel Additives

1990-10-01
902227
Considerable development effort has shown that conventional diesel engine lubricating oil specifications do not define the needs for acceptable injector life in methanol-fueled, two-stroke cycle diesel engines. A cooperative program was undertaken to formulate an engine oil-fuel additive system which was aimed at improving performance with methanol fueling. The performance feature of greatest concern was injector tip plugging. A Taguchi matrix using a 100 hour engine test was designed around an engine oil formulation which had performed well in a 500 hour engine test using a simulated urban bus cycle. Parameters investigated included: detergent level and type, dispersant choice, and zinc dithiophosphate level. In addition, the influence of a supplemental fuel additive was assessed. Analysis of the Taguchi Matrix data shows the fuel additive to have the most dramatic beneficial influence on maintaining injector performance.
Technical Paper

Investigations of Lubricant Sludge Formation in the Field: Development of an Effective New Fleet Test Technique

1991-02-01
910748
A new field test procedure for evaluation of the sludge formation tendencies of lubricants has been developed. The procedure has the benefits of short running time, reduced variability, and dramatic separation of API SF vs API SG oils. This paper discusses development of the operational procedure and evaluation of four lubricants, including commercial-type API SF and API SG oils as well as experimental future oils. Significantly improved sludge ratings were obtained with an experimental API SG oil. The sludge formation process was studied using infrared spectroscopy, TAN, dielectric measurements, viscosity, quasielastic light scattering particle size, and transmission electron microscopy techniques. These analyses show production of contaminants which form insoluble particles that build up and precipitate out of suspension as sludge. Certain drain analyses can be used as tools for predicting field sludge deposition time.
Technical Paper

Reducing Cycle Times of Refill Friction Stir Spot Welding in Automotive Aluminum Alloys

2020-04-14
2020-01-0224
A major barrier, preventing RFSSW from use by manufacturers, is the long cycle time that has been historically associated with making a weld. In order for RFSSW to become a readily implementable welding solution, cycle times must be reduced to an acceptable level, similar to that of well developed, competing spot joining processes. In the present work, an investigation of the RFSSW process is conducted to evaluate factors that have traditionally prevented the process from achieving fast cycle times. Within this investigation, the relationship between cycle time and joint quality is explored, as is the meaning and measurement of cycle time in the RFSSW process. Claims and general sentiment found in prior literature are challenged regarding the potential for high-speed RFSSW joints to be made.
Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Journal Article

Challenging Conventional Wisdom by Utilizing Group II Base Oils in Fuel Efficient Axle Oils

2017-10-08
2017-01-2356
Improving vehicle fuel economy is a major consideration for original equipment manufacturers (OEMs) and their technology suppliers worldwide as government legislation increasingly limits carbon dioxide emissions. At the same time that automotive OEMs have been driving toward lower viscosity axle oils to improve fuel economy, OEMs have worked to improved durability over an extended drain interval. These challenges have driven the use of API group III and/or API group IV base oils in most factory fill axle oils. This paper details the development of a novel lower viscosity SAE 75W-85 axle technology based on group II base oil that rivals the performance of a PAO-based axle oil and challenges the conventional wisdom of not using group II base oils in fuel efficient axle oils.
Journal Article

Optimizing Engine Oils for Fuel Economy with Advanced Test Methods

2017-10-08
2017-01-2348
Increasingly stringent fuel economy and emissions regulations around the world have forced the further optimization of nearly all vehicle systems. Many technologies exist to improve fuel economy; however, only a smaller sub-set are commercially feasible due to the cost of implementation. One system that can provide a small but significant improvement in fuel economy is the lubrication system of an internal combustion engine. Benefits in fuel economy may be realized by the reduction of engine oil viscosity and the addition of friction modifying additives. In both cases, advanced engine oils allow for a reduction of engine friction. Because of differences in engine design and architecture, some engines respond more to changes in oil viscosity or friction modification than others. For example, an engine that is designed for an SAE 0W-16 oil may experience an increase in fuel economy if an SAE 0W-8 is used.
Journal Article

Improving Fuel Efficiency of Motorcycle Oils

2013-10-15
2013-32-9063
As the motorcycle market grows, the fuel efficiency of motorcycle oils is becoming an important issue due to concerns over the conservation of natural resources and the protection of the environment. Fuel efficient engine oils have been developed for passenger cars by moving to lower viscosity grades and formulating the additive package to reduce friction. Motorcycle oils, however, which operate in much higher temperature regimes, must also lubricate the transmission and the clutch, and provide gear protection. This makes their requirements fundamentally very different from passenger car oils. Developing fuel efficient motorcycle oils, therefore, can be a difficult challenge. Formulating to reduce friction may cause clutch slippage and reducing the viscosity grade in motorcycles must be done carefully due to the need for gear protection.
Journal Article

Engine Oil Fuel Economy Testing - A Tale of Two Tests

2017-03-28
2017-01-0882
Fuel economy is not an absolute attribute, but is highly dependent on the method used to evaluate it. In this work, two test methods are used to evaluate the differences in fuel economy brought about by changes in engine oil viscosity grade and additive chemistry. The two test methods include a chassis dynamometer vehicle test and an engine dynamometer test. The vehicle testing was conducted using the Federal Test Procedure (FTP) testing protocol while the engine dynamometer test uses the proposed American Society for Testing and Materials (ASTM) Sequence VIE fuel economy improvement 1 (FEI1) testing methodology. In an effort to improve agreement between the two testing methods, the same model engine was used in both test methods, the General Motors (GM) 3.6 L V6 (used in the 2012 model year Chevrolet™ Malibu™ engine). Within the lubricant industry, this choice of engine is reinforced because it has been selected for use in the proposed Sequence VIE fuel economy test.
Journal Article

Impact of Viscosity Modifiers on Gear Oil Efficiency and Durability: Part II

2013-04-08
2013-01-0299
This paper outlines the second part in a series on the effect of polymeric additives commonly known as viscosity modifiers (VM) or viscosity index improvers (VII) on gear oil efficiency and durability. The main role of the VM is to improve cold temperature lubrication and reduce the rate of viscosity reduction as the gear oil warms to operating temperature. However, in addition to improved operating efficiency across a broad temperature range compared to monograde fluids the VM can impart a number of other significant rheological improvements to the fluid [1]. This paper expands on the first paper in the series [2], covering further aspects in fluid efficiency, the effect of VM chemistry on these and their relationship to differences in hypoid and spur gear rig efficiency testing. Numerous VM chemistry types are available and the VM chemistry and shear stability is key to fluid efficiency and durability.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
Technical Paper

Development of an Experimental FRF-Based Substructuring Model to Forward Predict the Effects of Beam Axle Design Modifications on Passenger Vehicle Axle Whine

2007-05-15
2007-01-2237
This paper describes the process used to develop an experimental model with forward prediction capabilities for passenger vehicle axle whine performance, focusing initially on beam axle design modifications. This process explains how experimental Transfer Path Analysis (TPA), Running Modes Analysis (RMA) and Modal Analysis were used along with an experimental FRF-Based Substructuring (FBS) model. The objective of FBS techniques is to predict the dynamic behavior of complex structures based on the dynamic properties of each component of the structure. The FBS model was created with two substructures, the body/suspension and the empty rear beam axle housing. Each step in the creation of the baseline FBS model was correlated, and the forward predictive capability was verified utilizing an experimental modification to the beam axle structure.
Technical Paper

Axle Imbalance Measurement and Balancing Strategies

2007-05-15
2007-01-2238
This paper summarizes a study on axle balance measurement and balancing strategies. Seven types of axles were investigated. Test samples were randomly selected from products. Two significant development questions were set out to be answered: 1) What is the minimum rotational speed possible in order to yield measured imbalance readings which correlated to in-vehicle imbalance-related vibration. What is the relationship between the measured imbalance and rotational speed. To this end, the imbalance level of each axle was measured using a test rig with different speeds from 800 to 4000 rpm with 200 rpm increments. 2) Is it feasible to balance axle sub-assemblies only and still result in a full-assembly that satisfies the assembled axle specification? To this end, the sub-assemblies were balanced on a balance machine to a specified level. Then with these balanced sub-assemblies, the full assemblies were completed and audited on the same balance test rig in the same way.
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Technical Paper

Validation of Vehicle NVH Performance using Experimental Modal Testing and In-Vehicle Dynamic Measurements

2007-05-15
2007-01-2320
NVH targets for future vehicles are often defined by utilizing a competitive benchmarking vehicle in conjunction with an existing production and/or reference vehicle. Mode management of full vehicle modes is one of the most effective and significant NVH strategies to achieve such targets. NVH dynamic characteristics of a full vehicle can be assessed and quantified through experimental modal testing for determination of global body mode resonance frequency, damping property, and mode shape. Major body modes identified from full vehicle modal testing are primarily dominated by the vehicle's body-in-white structure. Therefore, an estimate of BIW modes from full vehicle modes becomes essential, when only full vehicle modes from experimental modal testing exist. Establishing BIW targets for future vehicles confines the fundamental NVH behavior of the full vehicle.
X